Metal-Organic Framework Structures in Modern Research: Medicine, Diagnostics, Ecology

Main Article Content

Yu.V. Tumanov
P.P. Gladyshev
A.A. Sergeev
A.V. Zaykovskaya

Abstract

The review presents modern technological developments of means to indicate viruses and toxins using new nanomaterials based on frame structures. The synthesis and functionalization of metal-organic compounds of a frame structure (MOCs) and covalent organic frameworks (COF) are considered as well as the latest achievements in biomedical fields, including the delivery of drugs, nucleic acids, proteins and dyes for cancer therapy, bioimaging, antimicrobial drugs, biosensors and biocatalysis. New trends and promising areas in the development of biomedical materials based on MOC/COF are discussed. Data on the application of new biotechnological products based on simeconductor nanocrystals (quantum dots) and their composites as part of MOCs in solving the problems of modern disease diagnostics that play a strategic role in the development of nanotechnology, biotechnology and nanomedicine are presented. Issues related to the recognition of biomolecules using hybrid MOC/COF structures are discussed. The use of QD nanocomposites with other carbon-based, grapheme-based or MOC-based nanomaterials resulted in the development of new systems for bioimaging, drug delivery, optogenetics and theranostics. Undoubtedly, the rapidly accumulating data on the behavior of QD/MOC in analytical systems in vitro will increase knowledge for the advancement of QD nanotechnology in research in vivo and clinical application.

Article Details

How to Cite
Tumanov, Y., Gladyshev, P., Sergeev, A., & Zaykovskaya, A. (2025). Metal-Organic Framework Structures in Modern Research: Medicine, Diagnostics, Ecology. Biomedical Chemistry: Research and Methods, 8(3), e00270. https://doi.org/10.18097/BMCRM00270
Section
REVIEWS

References

  1. Mohammad, R. S., Navid, R., Masoud, M., Francis, V., Leonid, G. V., Rafael,L. (2021) Metal-organic frameworks (MOFs) for cancer therapy. Materials,14(23), 7277. DOI
  2. Kargozar, S., Hoseini, S. J., Milan, P. B., Hooshmand, S., Kim, H.-W.,Mozafari, M. (2020) Quantum Dots: A Review from Concept to Clinic. SpecialIssue: AFOB XV – Nanomaterials for Biomedical Applications, 15(12),2000117. DOI
  3. Liu, S.-L., Wang, Z.-G., Xie, H.-Y., Liu, An-An, Lamb, D. C., Pang,D.-W. (2020) Single-Virus Tracking: From Imaging Methodologies toVirological Applications. Chem. Rev., 120, 1936−1979. DOI
  4. Rehan, F., Zhang, M., Fang, J., Greish, K. (2024) Therapeutic Applicationsof Nanomedicine: Recent Developments and Future Perspectives. Molecules,29(9), 2073. DOI
  5. Cote, A. P., Benin, A. I., Ockwig, N. W., O’Keeffe, M., Matzger, A. J., Yaghi,O. M. (2005) Porous, crystalline, covalent organic frameworks. Science, 310,1166–1170. DOI
  6. Wu, J., Liu, H., Chen, W., Ma, B., Ju, H. (2023) Device integration ofelectrochemical biosensors. Nat. Rev. Bioeng, 1(5), 346-360. DOI
  7. Li, X., Zheng, X., Yuan, Y., Deng, J., Su, L., Xu, K. (2025) A review ofresearch progress on COF-based biosensors in pathogen detection. Anal. Chim.Acta, 1342, 343605. DOI
  8. Afshariazar, F., Morsali, A. (2021) A dual-response regenerable luminescent2D-MOF for nitroaromatic sensing via target-modulation of active interactionsites. J. Mater. Chem. C, 9, 12849–12858. DOI
  9. Huo, Y. P., Liu, S., Gao, Z. X., Ning, B. A., Wang, Y. (2021) State-of-the-artprogress of switch fluorescence biosensors based on metal-organic frameworksand nucleic acids. Mikrochim Acta, 188(5), 168. DOI
  10. Wang, X., Ye, N. (2017) Recent advances in metal-organic frameworksand covalent organic frameworks for sample preparation and chromatographicanalysis. Electrophoresis, 38(24), 3059-3078. DOI
  11. Zuliani, A., Khiar, N., Carrillo-Carrión, C. (2023) Recent progress ofmetal–organic frameworks as sensors in (bio)analytical fields: towards realworldapplications. Anal. Bioanal. Chem., 415, 2005–2023. DOI
  12. Liang, H., Wang, L., Yang, Y., Song, Y., Wang, L. (2021) A novelbiosensor based on multienzyme microcapsules constructed from covalentorganicframework. Biosens. Bioelectron., 193, 113553. DOI
  13. Yue, Y., Ji, D., Liu, Y., Wei, D. (2024) Chemical Sensors Based onCovalent Organic Frameworks. Chemistry, 30(3), e202302474. DOI
  14. Păun, C., Motelică, L., Ficai, D., Ficai, A., Andronescu, E. (2023) Metal-Organic Frameworks: Versatile Platforms for Biomedical Innovations. Materials(Basel), 16(18), 6143. DOI
  15. Theyagarajan, K., Kim, Y. J. (2023) Recent Developments in the Designand Fabrication of Electrochemical Biosensors Using Functional Materials andMolecules. Biosensors (Basel), 13(4), 424. DOI
  16. Deng, Y., Wang, Y., Xiao, X., Saucedo, B. J., Zhu, Z., Xie, M., Xu, X., Yao,K., Zhai, Y., Zhang, Z., Chen, J. (2022) Progress in Hybridization of CovalentOrganic Frameworks and Metal-Organic Frameworks. Small, 18(38), e2202928. DOI
  17. Saboorizadeh, B., Zare-Dorabei, R., Safavi, M., Safarifard, V. (2024)Applications of Metal-Organic Frameworks (MOFs) in Drug Delivery,Biosensing, and Therapy: A Comprehensive Review. Langmuir., 40(43), 22477-22503. DOI
  18. Moghadam, P. Z. Li, A. Wiggin, S. B. Tao, A. Maloney, A. G. P. Wood,P. A. Ward, S. C. Fairen-Jimenez, D. (2017) Development of a CambridgeStructural Database Subset: A Collection of Metal–Organic Frameworks forPast, Present, and Future. Chem. Mater, 29, 2618–2625. DOI
  19. Majumdar, S., Moosavi, S. M., Jablonka, K. M., Ongari, D., Smit, B. (2021)Diversifying Databases of Metal Organic Frameworks for High-ThroughputComputational Screening. ACS Appl. Mater. Interfaces, 13, 61004–61014. DOI
  20. Wang, Q., Sun, Y., Li, S., Zhang, P., Yao, Q. (2020) Synthesis andmodification of ZIF-8 and its application in drug delivery and tumor therapy.RSC Adv., 10, 37600-37620. DOI
  21. Dutta, A., Pan, Y., Liu, J.Q., Kumar, A. (2021) Multicomponent isoreticularmetal-organic frameworks: Principles, current status and challenges. Coord.Chem. Rev., 445, 214074. DOI
  22. Wang, B., Cote, A. P., Furukawa, H., O’Keeffe, M., Yaghi, O. M. (2002)Colossal cages in zeolitic imidazolate frameworks as selective carbon dioxidereservoirs. Nature, 453(7192), 207–211. DOI
  23. Latroche, M., Surble, S., Serre, C., Mellot-Draznieks, C., Llewellyn, P. L.,Lee, J. H., Chang, J. S., Jhung, S. H., Ferey, G. (2006) Hydrogen storage in thegiant-pore metal-organic frameworks MIL-100 and MIL-101. Angew. Chem.Int. Ed. Engl, 45(48), 8227–8231. DOI
  24. Ma, S., Sun, D., Simmons, J. M., Collier, C. D., Yuan, D. Q., Zhou, H. C.(2008) Metal-organic framework from an anthracene derivative containingnanoscopic cages exhibiting high methane uptake. J. Am. Chem. Soc, 130(3),1012–1016. DOI
  25. Cavka, J. H., Jakobsen, S., Olsbye, U., Guillou, N., Lamberti, C., Bordiga,S., Lillerud, K. P. (2008) A new zirconium inorganic building brick formingmetal organic frameworks with exceptional stability. J. Am. Chem. Soc,130(42), 13850–13851. DOI
  26. Jiao, L., Seow, J. Y. R., Skinner, W. S., Wang, Z. U., Jiang, H. L. (2019)Metal-organic frameworks: structures and functional applications. Mater. Today,27, 43–68. DOI
  27. Pashazadeh-Panahi, P., Belali, S., Sohrabi, H., Oroojalian, F., Hashemzaei,M., Mokhtarzadeh, A., de la Guardia, M. (2021) Metal-organic frameworksconjugated with biomolecules as efficient platforms for development ofbiosensors. TrAC Trends Anal. Chem., 141, 116285. DOI
  28. Jassal, A. K., Kajal, P. (2024). Quantum Dots@Metal–Organic FrameworksComposites. In: Thomas, S., Das, P., Ganguly, S. (eds) Quantum Dots BasedNanocomposites. Engineering Materials. Springer, Cham. DOI
  29. Jia, J., Zhang, S., Wen, K., Li, Q. (2019) Nano-scaled zeolitic imidazoleframework-8 as an efficient carrier for the intracellular delivery of RNase Ain cancer treatment. Int. J. Nanomedicine, 14, 9971–9981. DOI
  30. Teplensky, M. H., Fantham, M., Poudel, C., Hockings, C., Lu, M., Guna,A., Aragones-Anglada, M., Moghadam, P. Z., Li, P., Farha, O. K., Bernaldo deQuirós, F. S., Richards, F. M., Jodrell, D. I., Kaminski, S. G., Kaminski, C. F.,Fairen-Jimenez, D. (2019) A highly porous metal-organic framework systemto deliver payloads for gene knockdown. Chem., 5(11), 2926–2941. DOI
  31. Shi, L., Wu, J., Qiao, X., Ha, Y., Li, Y., Peng, C., Wu, R. (2020) In situbiomimetic mineralization on ZIF-8 for smart drug delivery. ACS Biomater. Sci.Eng, 6(8), 4595–4603. DOI
  32. Zhang, Y., Lai, L., Liu, Y., Chen, B., Yao, J., Zheng, P., Pan, Q., Zhu, W.(2022) Biomineralized cascade enzyme-encapsulated ZIF-8 nanoparticlescombined with antisense oligonucleotides for drug-resistant bacteria treatment.ACS Appl. Mater. Interfaces, 14(5), 6453–6464. DOI
  33. Abdelhamid, H. N., Dowaidar, M., Langel, Ü. (2020) Carbonized chitosanencapsulated hierarchical porous zeolitic imidazolate frameworks nanoparticlesfor gene delivery. Microporous Mesoporous Mater, 302, 110200. DOI
  34. Khalilian, S.F., Tohidi, M., Rastegari, B. (2020) Synthesis of abiocompatible nanoporous zeolitic imidazolate framework-8 in the presence ofGum Arabic inspired by the biomineralization process. CrystEngComm, 22(10),1875–1884. DOI
  35. Ren, L., Xiao, X., Chen, Y., Yu, Y., Zhang, Q., Liu, R., Xu, W. (2019)Preparation of ZIF-8/natural plant fiber composites via biomimeticmineralization for highly efficient removal of formaldehyde. ChemistrySelect,4(42), 12294–12303. DOI
  36. Velásquez-Hernández, M. J., Astria, E., Winkler, S., Liang, W., Wiltsche, H.,Poddar A., Shukla R., Prestwich G., Paderi J., Salcedo-Abraira P., AmenitschH., Horcajada P., Doonan, C. J., Falcaro, P. (2020) Modulation of metalazolateframeworks for the tunable release of encapsulated glycosaminoglycans.Chem Sci., 11(39), 10835–10843. DOI
  37. Li, S., Dharmarwardana, M., Welch, R. P., Ren, Y., Thompson, C. M.,Smaldone R. A., Gassensmith, J. J. (2016) Template-directed synthesis ofporous and protective core-shell bionanoparticles. Angew. Chem. Int. Ed. Engl,55(36), 10691–10696. DOI
  38. Liang, K., Richardson, J. J., Cui, J., Caruso, F., Doonan, C. J., Falcaro, P.(2016) Metal–organic framework coatings as cytoprotective exoskeletons forliving cells. Adv. Mater, 28(36), 7910–7914. DOI
  39. Liang, K., Richardson, J. J., Doonan, C. J., Mulet, X., Ju, Y., Cui, J.,Caruso, F., Falcaro, P. (2017) An enzyme-coated metal–organic frameworkshell for synthetically adaptive cell survival. angewandte chemie internationaledition. Angew. Chem. Int. Ed. Engl, 56(29), 8510–8515. DOI
  40. Li, Y., Zhang, K., Liu, P., Chen, M., Zhong, Y., Ye, Q., Wei, M. Q., Zhao, H.,Tang, Z. (2019) Encapsulation of plasmid DNA by nanoscale metal–organicframeworks for efficient gene transportation and expression. Adv. Mater,31(29), e1901570. DOI
  41. Polash, S. A., Garlick-Trease, K., Pyreddy, S., Periasamy, S., Bryant,G., Shukla, R. (2023) Amino acid-coated zeolitic imidazolate framework fordelivery of genetic material in prostate cancer cell. Molecules, 28(12), 4875. DOI
  42. Alyami, M. Z., Alsaiari, S. K., Li, Y., Qutub, S. S., Aleisa, F.A., Sougrat,R., Merzaban, J. S., Khashab, N. M. (2020) Cell-type-specific CRISPR/Cas9delivery by biomimetic metal organic frameworks. J. Am. Chem. Soc, 142(4),1715–1720. DOI
  43. Alsaiari, S. K., Patil, S., Alyami, M., Alamoudi, K. O., Aleisa, F. A.,Merzaban, J. S., Li, M., Khashab, N. M. (2018) Endosomal escape and deliveryof CRISPR/Cas9 genome editing machinery enabled by nanoscale zeoliticimidazolate framework. J. Am. Chem. Soc, 140(1), 143–146. DOI
  44. Liu, C., Xu, X., Koivisto, O., Zhou, W., Jacquemet, G., Rosenholm, J. M.,Zhang, H. (2021) Improving the knock-in efficiency of the MOF-encapsulatedCRISPR/Cas9 system through controllable embedding structures. Nanoscale,13(39), 16525–16532. DOI
  45. Poddar, A., Pyreddy, S., Carraro, F., Dhakal, S., Rassell, A., Field, M. R.,Reddy, T. S., Falcaro, P., Doherty, C. M., Shukla, R. (2020) ZIF-C for targetedRNA interference and CRISPR/Cas9 based gene editing in prostate cancer.Chem. Commun. (Camb), 56(98), 15406–15409. DOI
  46. Lee, H. J., Wark, A. W., Corn, R. M. (2008) Microarray methods for proteinbiomarker detection. Analyst, 133, 975. DOI
  47. Tran, V. A., Le, V. T., Doan, V. D., Giang, N. L. Vo. (2023) Utilization ofFunctionalized Metal-Organic Framework Nanoparticle as Targeted DrugDelivery System for Cancer Therapy. Pharmaceutics, 15(3), 931. DOI
  48. Smith, G. P. (1985) Filamentous fusion phage: novel expression vectors thatdisplay cloned antigens on the virion surface. Science, 228(4705), 1315-1317. DOI
  49. Petrenko, V. A., Smith, G. P. (2000) Phages from landscape libraries assubstitute antibodies. Protein Eng, 13, 589–592. DOI
  50. Zhang, W., Arramel, A., Wong, P. K. J., Zhang, L., Zheng, J., Zhang, W.,Zhang, H., Yan, X., Qi, J., Li, J. (2020) Core–shell hybrid zeolitic imidazolateframework-derived hierarchical carbon for capacitive deionization. J. Mater.Chem. A, 8, 14653–14660. DOI
  51. Biswal, B. P., Shinde, D. B., Pillai, V. K., Banerjee, R. (2013) Stabilizationof graphene quantum dots (GQDs) by encapsulation inside zeolitic imidazolateframework nanocrystals for photoluminescence tuning. Nanoscale, 5, 10556–10561. DOI
  52. Reali, S., Najib, E. Y., Treuerné Balázs, K. E., Tan, A. C. H., Váradi, L.,Hibbs, D. E., Groundwater, P. W. (2019) Novel diagnostics for point-of-carebacterial detection and identification. RSC Adv, 9, 21486-21497. DOI
  53. Davydova, A., Vorobjeva, M., Pyshnyi, D., Altman, S., Vlassov, V.,Venyaminova, A. (2016) Aptamers against pathogenic microorganisms. Crit.Rev. Microbiol, 42(6), 847–865. DOI
  54. Anderson, G. P., Glaven, R. H., Algar, W. R., Susumu, K., Stewart, M. H.,Medintz, I. L., Goldman, E. R. (2013) Single domain antibody–quantum dotconjugates for ricin detection by both fluoroimmunoassay and surface plasmonresonance. Anal. Chim. Acta, 786, 132–138. DOI
  55. Fetter, L., Richards, J., Daniel, J., Roon, L., Rowland, T. J., Bonham, A. J.(2015) Electrochemical aptamer scaffold biosensors for detection of botulismand ricin toxins. Chem. Commun., 51, 15137–15140. DOI
  56. Lamont, E. A., He, L. L., Warriner K., Labuza, T. P., Sreevatsan, S. (2011) Asingle DNA aptamer functions as a biosensor for ricin. Analyst, 136, 3884–3895. DOI
  57. Guryev, E.L., Shanwar, S., Zvyagin, A.V., Deyev, S.M., Balalaeva, I.V.(2021) Photoluminescent Nanomaterials for Medical Biotechnology. ActaNaturae, 13(2), 16-31. DOI
  58. Park, J. W., Lee, S. J., Choi, E. J., Kim, J., Song, J. Y., Gu, M. B. (2014)An ultra-sensitive detection of a whole virus using dual aptamers developedby immobilization-free screening. Biosens. Bioelectron., 51, 324-329. DOI
  59. Tumanov, Yu.V., Boldyrev, A.N., Autenshlyus, A.I. Medical biotechnology:diagnostics of diseases and development of drugs, NGTU, Novosibirsk, 2016,214 pp.
  60. Bi, S., Yue, S., Zhang, S. (2017) Hybridization chain reaction: a versatilemolecular tool for biosensing, bioimaging, and biomedicine. Chem. Soc. Rev.,46(14), 4281-4298. DOI
  61. Bardajee, G. R., Zamani, M., Mahmoodian, H., Elmizadeh, H., Yari,H., Jouyandeh, L., Shirkavand, R., Sharifi, M. (2022) Capability of novelfluorescence DNA-conjugated CdTe/ZnS quantum dots nanoprobe forCOVID-19 sensing. Spectrochim. Acta A. Mol. Biomol. Spectrosc, 269,120702. DOI
  62. Hötzer, B., Medintz, I. L., Hildebrandt, N. (2012) Fluorescence inNanobiotechnology: Sophisticated Fluorophores for Novel Applications. Small,8, 2297. DOI
  63. Dasilva, N., Díez, P., Matarraz, S., González-González, M., Paradinas, S.,Orfao, A., Fuentes, M. (2012) Biomarker Discovery by Novel Sensors Based onNanoproteomics Approaches. Sensors, 12, 2284. DOI
  64. Sandana Mala, J. G., Rose, C. (2014) Facile production of ZnS quantumdot nanoparticles by Saccharomyces cerevisiae MTCC 2918. J. Biotechnol, 170,73–78. DOI
  65. Zorab, M. M., Mohammadjani, N., Ashengroph, M., Alavi, M. (2023)Biosynthesis of Quantum Dots and Their Therapeutic Applications in theDiagnosis and Treatment of Cancer and SARS-CoV-2. Adv. Pharm. Bull, 13(3),411–422. DOI
  66. Dabbousi, B. O., Rodriguez-Viejo, J., Mikulec, F. V., Heine, J. R.,Mattoussi, H., Ober, R., Jensen, K. F., Bawendi, M. G. (1997) (CdSe) ZnScore−shell quantum dots: synthesis and characterization of a size series ofhighly luminescent nanocrystallites. J. Phys. Chem., B, 101, 9463–9475. DOI
  67. Wang, J., Mora-Seró, I., Pan, Z., Zhao, K., Zhang, H., Feng, Y., Yang, G.,Zhong, X., Bisquert, J. (2013) Core/shell colloidal quantum dot exciplex statesfor the development of highly efficient quantum-dot-sensitized solar cells. J.Am. Chem. Soc, 135, 15913. DOI
  68. Kaur, A., Dhakal, S. (2020) Recent applications of FRET-based multiplexedtechniques. Trac-Trends Anal. Chem., 123, 115777. DOI
  69. Racca, L., Cauda, V. (2021) Remotely Activated Nanoparticles forAnticancer Therapy. Nano-Micro Lett, 13, 11. DOI
  70. Lidke, D. S., Nagy, P., Heintzmann, R., Arndt-Jovin, D. J., Post, J. N.,Grecco, H. E., Jares-Erijman, E. A., Jovin, T. M. (2004) Quantum Dot LigandsProvide New Insights into erbB/HER Receptor−Mediated Signal Transduction.Nat. Biotechnol, 22, 198−203. DOI
  71. Srinivasan, C., Lee, J., Papadimitrakopoulos, F., Silbart, L. K., Zhao, M.,Burgess, D. J. (2006) Labeling and Intracellular Tracking of Functionally ActivePlasmid DNA with Semiconductor Quantum Dots. Mol. Ther, 14, 192−201. DOI
  72. Wu, X., Liu, H., Liu, J., Haley, K. N., Treadway, J. A., Larson, J. P., Ge, N.,Peale, F., Bruchez, M. P. (2003) Immunofluorescent Labeling of Cancer MarkerHer2 and Other Cellular Targets with Semiconductor Quantum Dots. Nat.Biotechnol, 21, 41−46. DOI
  73. Chen, C., Peng, J., Xia, H., Wu, Q., Zeng, L., Xu, H., Tang, H., Zhang,Z., Zhu, X., Pang, D., et al. (2010) Quantum-Dot-Based ImmunofluorescentImaging of HER2 and ER Provides New Insights into Breast CancerHeterogeneity. Nanotechnology, 21, 095101. DOI
  74. Chen, C., Xia, H. S., Gong, Y. P., Peng, J., Peng, C. W., Hu, M. B., Zhu, X.B., Pang, D. W., Sun, S. R., Li, Y. (2010) The Quantitative Detection of TotalHER2 Load by Quantum Dots and the Identification of a New Subtype ofBreast Cancer with Different 5-Year Prognosis. Biomaterials, 31, 8818−8825. DOI
  75. Chen, C., Liu, S. L., Cui, R., Huang, B. H., Tian, Z. Q., Jiang, P., Pang, D.W., Zhang, Z. L. (2008) Diffusion Behaviors of Water-Soluble CdSe/ZnS Core/Shell Quantum Dots Investigated by Single-Particle Tracking. J. Phys. Chem. C,112(48), 18904−18910. DOI. org/10.1021/jp807074t
  76. Gao, X., Wang, T., Wu, B., Chen, J., Chen, J., Yue, Y., Dai, N., Chen, H.,Jiang, X. (2008) Quantum Dots for Tracking Cellular Transport of Lectin-Functionalized Nanoparticles. Biochem. Biophys. Res. Commun., 377, 35−40. DOI
  77. Liu, S.-L., Wang, Z.-G., Xie, H.-Y., Liu, A.-A., Lamb, D. C., Pang,D.-W. (2020) Single-Virus Tracking: From Imaging Methodologies toVirological Applications. Chem. Rev., 120, 1936−1979. DOI
  78. Kargozar, S., Hoseini, S. J., Milan, P. B., Hooshmand, S., Kim, H.-W.,Mozafari, M. (2020) Quantum Dots: A Review from Concept to Clinic.Biotechnol. J., 15(12), e2000117. DOI
  79. Lim, J., Bae, W. K., Kwak J., Lee, S., Lee, C., Char, K. (2012) Towardszero-threshold optical gain using charged semiconductor quantum dots. Optical.Mater. Express, 2, 594-698. DOI
  80. Vasil’ev, R. B., Dirin, D. N. Kvantovye tochki: sintez, svojstva, primenenie,Metodicheskie materialy. MGU im. M.V. Lomonosova: Moskva, 2007. 34 s.
  81. Poddar, A., Conesa, J. J., Liang, K., Dhakal, S., Reineck, P., Bryant, G.,Pereiro, E., Ricco, R., Amenitsch, H., Doonan, C., Mulet, X., Doherty, C. M.,Falcaro, P., Shukla, R. (2019) Encapsulation, visualization and expression ofgenes with biomimetically mineralized zeolitic imidazolate framework-8 (ZIF-8). Small, 15(36), e1902268. DOI
  82. Maysinger, D., Ji, J., Hutter, E., Cooper, E. (2015) Nanoparticle-Based andBioengineered Probes and Sensors to Detect Physiological and PathologicalBiomarkers in Neural Cells. Front. Neurosci, 9, 480. DOI
  83. Liu, T., Xing, R., Zhou, Y.-F., Zhang, J., Su, Y.-Y., Zhang, K.-Q., He, Y.,Sima, Y.-H., Xu, S.-Q. (2014) Hematopoiesis toxicity induced by CdTe quantumdots determined in an invertebrate model organism. Biomaterials, 35, 2942. DOI
  84. Xu, G., Zeng, S., Zhang, B., Swihart, M. T., Yong, K.-T., Prasad, P. N.(2016) New Generation Cadmium-Free Quantum Dots for Biophotonics andNanomedicine. Chem. Rev., 116, 12234. DOI
  85. Khan, Z. U., Khan, L. U., Brito, H. F., Gidlund, M., Malta, O. L., DiMascio, P. (2023) Colloidal Quantum Dots as an Emerging Vast Platform andVersatile Sensitizer for Singlet Molecular Oxygen Generation. ACS Omega,8(38), 34328-34353. DOI
  86. Liu, S.-L., Wang, Z.-G., Xie, H.-Y., Liu, A.-A., Lamb, D. C., Pang,D.-W. (2020) Single-Virus Tracking: From Imaging Methodologies toVirological Applications. Chem. Rev., 120(3), 1936–1979. DOI
  87. Bilan, R., Nabiev, I., Sukhanova, A. (2016) Quantum Dot-Based Nanotoolsfor Bioimaging, Diagnostics, and Drug Delivery. Chembiochem, 17(22), 2103-2114. DOI
  88. Srinivasan, C., Lee, J., Papadimitrakopoulos, F., Silbart, L. K., Zhao, M.,Burgess, D. J. (2006) Labeling and intracellular tracking of functionally activeplasmid DNA with semiconductor quantum dots. Mol. Ther, 14, 192–201. DOI
  89. Shirahata, N. Nanoparticle Biomarkers Adapted for Near-InfraredFluorescence Imaging. In: Wakayama, Y., Ariga, K. (eds) System-MaterialsNanoarchitectonics. NIMS Monographs. Springer: Tokyo, 2022. DOI
  90. Păun, C., Motelică, L., Ficai, D., Ficai, A., Andronescu, E. (2023) Metal-Organic Frameworks: Versatile Platforms for Biomedical Innovations. Materials(Basel), 16(18), 6143. DOI
  91. Alli, U., Hettiarachchi, S., Kellici, S. (2020) Chemical Functionalisation of2D Materials by Batch and Continuous Hydrothermal Flow Synthesis. Chem.–Eur. J., 26, 6447–6460. DOI
  92. Abderrahmane, A., Woo, C., Ko, P.-J. (2022) Low Power ConsumptionGate-Tunable WSe2/SnSe2 van der Waals Tunnel Field-Effect Transistor.Electronics, 11(5), 833. DOI
  93. Abderrahmane, A., Jung, P.-G., Woo, C., Ko, P. J. (2022) Effect of GateDielectric Material on the Electrical Properties of MoSe2-Based Metal–Insulator–Semiconductor Field-Effect Transistor. Crystals, 12(9), 1301. DOI
  94. Vu, C-A., Chen, W-Y. (2019) Field-effect transistor biosensors forbiomedical applications: recent advances and future prospects. Sensors, 19(19),4214. DOI
  95. Vu, C. A., Chen, W. Y. (2020) Predicting Future Prospects of Aptamersin Field-Effect Transistor Biosensors. Molecules, 25(3), 680. DOI
  96. Syedmoradi, L., Ahmadi, A., Norton, M. L., Omidfar, K. (2019) A review onnanomaterial-based field effect transistor technology for biomarker detection.Mikrochim Acta, 186(11), 739. DOI
  97. Panahi, A., Sadighbayan, D., Forouhi, S., Ghafar-Zadeh, E. (2021) RecentAdvances of Field-Effect Transistor Technology for Infectious Diseases.Biosensors (Basel), 11(4), 103. DOI
  98. Fazio, E., Spadaro, S., Corsaro, C., Neri, G, Leonardi, S. G., Neri, F.,Lavanya, N., Sekar, C., Donato, N., Neri, G. (2021) Metal-Oxide BasedNanomaterials: Synthesis, Characterization and Their Applications in Electricaland Electrochemical Sensors. Sensors (Basel), 21(7), 2494. DOI
  99. Bungon, T., Haslam, C., Damiati, S., O’Driscoll, B., Whitley, T., Davey,P., Siligardi, G., Charmet, J., Awan, S. A. (2021) Graphene FET Sensors forAlzheimer’s Disease Protein Biomarker Clusterin Detection. Front. Mol.Biosci., 8, 651232. DOI
  100. Ivanov, Yu. D., Pleshakova, T. O., Kozlov, A. F., Malsagova, K. A., Krohin,N. V., Shumyantseva, V. V., Shumov, I. D., Popov, V. P., Naumova, O. V., Fomin,B. I., Nasimov, D. A., Aseev, A. L., Archakov, A. I. (2012) SOI nanowire for thehigh-sensitive detection of HBsAg and α-fetoprotein. Lab on a Chip, 12(23),5104-5111. DOI
  101. Zhang, G.-J., Zhang, L., Huang, M. J., Luo, Z. H. H., Tay, G. K. I., Lim,E.-J. A., Kang, T. G., Chen Y. (2010) Silicon nanowire biosensor for highlysensitive and rapid detection of Dengue virus. Sens. Actuators B, 146, 138–144. DOI
  102. Su, P.-C., Chen, B.-H., Lee, Y.-C., Yang, Y.-S. (2020) Silicon NanowireField-Effect Transistor as Biosensing Platforms for Post-TranslationalModification. Biosensors, 10, 213. DOI
  103. Jin, Q., Men, K., Li, G., Ou, T., Lian, Z., Deng, X., Zhao, H., Zhang, Q.,Ming, A., Wei, Q., Wei, F., Tu, H. (2024) Ultrasensitive Graphene Field-EffectBiosensors Based on Ferroelectric Polarization of Lithium Niobate for BreastCancer Marker Detection. ACS Appl. Mater. Interfaces, 16(22), 28896–28904. DOI
  104. Xu, B. Z., Zhu, M. S., Zhang, W. C., Zhen, X., Pei, Z. X., Xue, Q., Zhi C.Y., Shi, P. (2016) Ultrathin MXene-Micropattern-Based Field-Effect Transistorfor Probing Neural Activity. Adv. Mater, 28, 3333–3339. DOI
  105. Mostafavi, E., Iravani, S. (2022) MXene-Graphene Composites: APerspective on Biomedical Potentials. Nanomicro Lett, 14(1), 130. DOI
  106. Li, Y., Peng, Z, Holl, N. J., Hassan, M. R., Pappas, J. M., et al. (2021)MXene-graphene field-effect transistor sensing of influenza virus and SARSCoV-2. ACS Omega, 6(10), 6643–6653. DOI
  107. Gu, H., Xing, Y., Xiong, P., Tang, H., Li, C., et al. (2019) Threedimensionalporous Ti3C2Tx MXene-graphene hybrid films for glucosebiosensing. ACS Appl. Nano Mater, 2(10), 6537–6545. DOI
  108. Ryder, C. R., Wood, J. D., Wells, S.A., Hersam, M. C. (2016) Chemicallytailoring semiconducting two-dimensional transition metal dichalcogenides andblack phosphorus. ACS Nano, 10, 3900–3917. DOI
  109. Wen, W., Song, Y., Yan, X., Zhu, C., Du, D., Wang, S., Asiri, A. M., Lin,Y. (2018) Recent advances in emerging 2D nanomaterials for biosensingand bioimaging applications. Mater. Today, 21, 164–177. DOI
  110. Xu, B. Z., Zhu, M. S., Zhang, W. C., Zhen, X., Pei, Z. X., Xue, Q., Zhi, C.Y., Shi, P. (2016) Ultrathin MXene-Micropattern-Based Field-Effect Transistorfor Probing Neural Activity. Adv. Mater, 28, 3333–3339. DOI
  111. Ge, Q., Li, C, Fan, Z., Xia, B., Zang, C., Chen, L., Zhao, C., Sang, H.,Wang, A. (2024) Nanoflower-shaped MXene-based field-effect transistorcapable of ultrasensitive microRNA-21 determination towards efficient lungcancer diagnosis. New J. Chem., 48, 9474–9479. DOI
  112. Qiao, Q., Wang, J., Li, B. (2024) Ti3C2Tx MXene nanosheet-baseddrug delivery/cascaded enzyme system for combination cancer therapyand anti-inflammation. Appl. Mater. Today, 38, 102215. DOI
  113. Qu, L., Wu, M., Zhao, L. (2023) A sandwich electrochemical immunosensorbased on MXene@dual MOFs for detection of tumor marker CA125.Microchimica Acta, 190, 147. DOI
  114. Majd, S. M., Salimi, A., Ghasemi, F. (2018) An ultrasensitive detectionof miRNA-155 in breast cancer via direct hybridization assay using twodimensional molybdenum disulfide field-effect transistor biosensor. Biosens.Bioelectron., 105, 6–13. DOI
  115. Lin, S., Chen, Y., Li, H., Wang, W., Wang, Y., Wu, M. (2024) Applicationof metal-organic frameworks and their derivates for thermal-catalyticC1 molecules conversion. iScience, 27(5), 109656. DOI
  116. Wang, Y., Sun, J., Tsubaki, N. (2023) Clever nanomaterials fabricationtechniques encounter sustainable C1 catalysis. Acc. Chem. Res, 56, 2341–2353. DOI
  117. Kreno, L. E., Leong, K., Farha, O. K., Allendorf, M., Van Duyne, R. P.,Hupp, J. T. (2012) Metal-organic framework materials as chemical sensors.Chem. Rev., 112, 1105–1125. DOI
  118. Yao, M. S., Lv, X.J., Fu, Z. H., Li, W. H., Deng, W. H., Wu, G. D., Xu, G.(2017) Layer-by-Layer Assembled Conductive Metal-Organic FrameworkNanofilms for Room-Temperature Chemiresistive Sensing. Angew. Chem., 56,16510–16514. DOI
  119. Barr, M. K. S., Nadiri, S., Chen, D. H., Weidler, P. G., Bochmann,S., Baumgart, H., Bachmann, J., Redel, E. (2022) Solution Atomic LayerDeposition of Smooth, Continuous, Crystalline Metal-Organic Framework ThinFilms. Chem. Mater., 34(22), 9836-9843. DOI
  120. Guo, L., Yang, L., Li, M., Kuang, L., Song, Y., Wang, L. (2021) Covalentorganic frameworks for fluorescent sensing: Recent developments and futurechallenges. Coord. Chem. Rev., 440, 213957. DOI
  121. Li, S. M., Zou, J., Tan, L. F., Huang, Z. B., Liang, P., Meng, X. W. (2022)Covalent organic frameworks: From linkages to biomedical applications. Chem.Eng. J., 446, 137148. DOI
  122. Shi, Y. Q., Yang, J. L., Gao, F., Zhang, Q. C. (2023) Covalent prganicframeworks: Recent progress in biomedical applications. ACS Nano, 17,1879–1905. DOI
  123. Akyuz, L. (2020) An imine based COF as a smart carrier for targeted drugdelivery: From synthesis to computational studies. Microporous MesoporousMater, 294, 109850. DOI
  124. Scicluna, M. C. Vella-Zarb, L. (2020) Evolution of nanocarrier drugdeliverysystems and recent advancements in covalent organic framework–drugsystems. ACS Appl. Nano Mater, 3, 3097–3115. DOI
  125. Jin, M., Zhao, Y. Y., Guan, Z. J., Fang, Y. (2023) Porous FrameworkMaterials for Bioimaging and Cancer Therapy. Molecules, 28, 1360. DOI
  126. Ma, J. X., T. Shu, T., Sun, Y. P., Zhou, X., Ren, C. Y., Su, L., Zhang, X.J. (2022) Luminescent Covalent Organic Frameworks for Biosensing andBioimaging Applications. Small, 18, 2103516. DOI
  127. Bagheri, A. R., Li, C. J., Zhang, X. L., Zhou, X. X., Aramesh, N., Zhou,H. Y., Jia, J. B. (2021) Recent advances in covalent organic frameworks forcancer diagnosis and therapy. Biomater. Sci., 9, 5745–5761. DOI
  128. Das, S. K., Roy, S., Das, A., Chowdhury, A., Chatterjee, N., Bhaumik, A.(2022) A conjugated 2D covalent organic framework as a drug delivery vehicletowards triple negative breast cancer malignancy. Nanoscale Adv., 4, 2313–2320. DOI
  129. Yue, Y., Ji, D., Liu, Y., Wei, D. (2024) Chemical Sensors Based onCovalent Organic Frameworks. Chemistry, 30(3), e202302474. DOI
  130. Cote, A. P., Benin, A. I., Ockwig, N. W., O’Keeffe, M., Matzger, A. J., Yaghi,O. M. (2005) Porous, crystalline, covalent organic frameworks. Science, 310,1166–1170. DOI
  131. Bhunia, S., Deo, K. A., Gaharwar, A. K. (2020) 2D Covalent OrganicFrameworks for Biomedical Applications. Adv. Funct. Mater., 30, 2002046. DOI
  132. Esrafili, A., Wagner, A., Inamdar, S., Acharya, A. P. (2021) CovalentOrganic Frameworks for Biomedical Applications. Adv. Healthcare Mater., 10,2002090. DOI
  133. Lohse, M. S., Bein, T. (2018) Covalent Organic Frameworks: Structures,Synthesis, and Applications. Adv. Funct. Mater., 28, 1705553. DOI
  134. Vardhan, H., Rummer, G., Deng, A., Ma, S. (2023) Large-Scale Synthesisof Covalent Organic Frameworks: Challenges and Opportunities. Membranes(Basel), 13(8), 696. DOI
  135. Zhao, X., Pachfule, P., Thomas, A. (2021) Covalent organic frameworks(COFs) for electrochemical applications. (Review Article) Chem. Soc. Rev., 50,6871-6913. DOI
  136. Côté, A. P., El-Kaderi, H. M., Furukawa, H., Hunt, J. R., Yaghi, O. M.(2007) Reticular synthesis of microporous and mesoporous 2D covalent organicframeworks. J. Am. Chem. Soc., 129, 12914–12915. DOI
  137. Lu, Z., Xu, K., Xiao, K. et al. (2025) Biomolecule sensors based on organicelectrochemical transistors. npj Flex Electron, 9, 9. DOI
  138. Thomas, S. A., Bekhti-Sari, F., Whelan, J., Alkhalifah, M. A., Khair,M., Traboulsi, H., Pasricha, R., Jagannathan, R., Mokhtari-Soulimane, N.,Gándara, F., Trabolsi, A., Benyettou, F., Kaddour, N., Prakasam, T., Das,G., Sharma, S. K. (2021) In vivo oral insulin delivery via covalent organicframeworks. Chem. Sci., 12(17), 6037-6047. DOI
  139. Uribe-Romo, F. J., Doonan, C. J., Furukawa, H., Oisaki, K., Yaghi, O. M.(2011) Crystalline covalent organic frameworks with hydrazone linkages. J.Am. Chem. Soc., 133, 11478–11481. DOI
  140. Das, G., Balaji, Shinde, D., Kandambeth, S., Biswal, B. P., Banerjee, R.(2014) Mechanosynthesis of imine, β-ketoenamine, and hydrogen-bondedimine-linked covalent organic frameworks using liquid-assisted grinding. Chem.Commun., 50(84), 12615–12618. DOI
  141. Puthiaraj, P., Lee, Y.-R., Zhang, S., Ahn, W.-S. (2016) Triazine-basedcovalent organic polymers: design, synthesis and applications in heterogeneouscatalysis. J. Mater. Chem. A, 4, 16288. DOI
  142. Ren, S., Bojdys, M. J., Dawson, R., Laybourn, A., Khimyak, Y. Z., Adams,D. J., Cooper, A. I. (2012) Porous, Fluorescent, Covalent Triazine-BasedFrameworks Via Room-Temperature and Microwave-Assisted Synthesis. Adv.Mater., 24(17), 2357– 2361. DOI
  143. Vitaku, E., Dichtel, W. R. (2017) Synthesis of 2D Imine-Linked CovalentOrganic Frameworks through Formal Transimination Reactions. J. Am. Chem.Soc., 139(37), 12911– 12914. DOI
  144. Ge, J., Xiao, J., Liu, L., Qiu, L., Jiang, X. (2016) Facile microwave-assistedproduction of Fe3O4 decorated porous melamine-based covalent organicframework for highly selective removal of Hg2+. J. Porous. Mater., 23(3),791–800. DOI
  145. Li, Z., Wang, W., Ndahiro, C., Zhou, X., Shen, S., Zhang, G. (2025) WS2quantum dots embedded CTF/PVDF membranes for efficient remediation ofdye wastewater with enhanced self-cleaning properties. J. Water Process Eng.,74, 107896. DOI
  146. Wang, Q. K., Ai, Z. L., Guo, Q. Y., Wang, X. J., Dai, C. H., et al. (2023)Photo-Enhanced Chemo-Transistor Platform for Ultrasensitive Assay of SmallMolecules. J. Am. Chem. Soc., 145, 10035–10044. DOI
  147. Anderson, N. L., Anderson, N. G. (2002) The human plasma proteome:history, character, and diagnostic prospects. Mol. Cell. Proteomics, 1(11), 845-867. DOI
  148. Yan, F., Zhang, M., Li, J. (2014) Solution–gated graphene transistorsfor chemical and biological sensors. Adv. Healthc. Mater., 3, 313–331. DOI
  149. Ju, P., Zhu, Y.-Y., Jiang, T.-T., Gao, G., Wang, S.-L., et al. (2023) DNAintercalation makes possible superior-gain organic photoelectrochemicaltransistor detection. Biosens. Bioelectron., 237, 5543. DOI
  150. Deng, M., Ren, Z., Zhang, H., Li, Z., Xue, C. et al. (2023) Unamplifiedand realtime label free miRNA21 detection using solution gated graphenetransistors in prostate cancer diagnosis. Adv. Sci., 10, 2205886. DOI
  151. Ma, X. et al. (2022) OFET and OECT, two types of organic thin-filmtransistor used in glucose and DNA biosensors: a review. IEEE Sens. J., 22,11405–11414. DOI
  152. Hou, L. et al. (2024) Reticular heterojunction for organicphotoelectrochemical transistor detection of neuron specific enolase. Small, 20,240003. DOI
  153. Ding, L. et al. (2022) Turning on high-sensitive organic electrochemicaltransistor based photoelectrochemical type sensor over modulation of Fe MOFby PEDOT. Adv. Funct. Mater., 32, 2202735. DOI
  154. Cai, H. et al. (2024) Molecule engineering metal–organic frameworkbasedorganic photoelectrochemical transistor sensor for ultrasensitive bilirubindetection. Anal. Chem., 96, 12739–12747. DOI
  155. Li, H., Fan, R., Zou, B, Yan, J., Shi, Q., Guo, G. (2023) Roles ofMXenes in biomedical applications: recent developments and prospects. J.Nanobiotechnology, 21, 73. DOI
  156. Xu, M., Chen, K., Zhu, L., Zhang, S., Wang, M., He, L., Zhang,Z., Du, M. (2021) MOF@COF Heterostructure Hybrid for Dual-ModePhotoelectrochemical−Electrochemical HIV-1 DNA Sensing. Langmuir., 37,13479–13492. DOI
  157. Li, Y., Zhang, C., He, Y., Gao, J., Li, W., Cheng, L., Sun, F., Xia, P., Wang,Q. A. (2022) Generic and Non-Enzymatic Electrochemical Biosensor IntegratedMolecular Beacon-like Catalyzed Hairpin Assembly Circuit with MOF@Au@G-Triplex/Hemin Nanozyme for Ultrasensitive Detection of miR-721.Biosens. Bioelectron., 203, 114051. DOI
  158. Liu, Y., Nie, Y., Wang, M., Zhang, Q., Ma, Q. (2020) Distance-Dependent Plasmon-Enhanced Electrochemiluminescence Biosensor Basedon MoS2 Nanosheets. Biosens. Bioelectron., 148, 111823. DOI
  159. Zhang, C., Shi, D., Li, X., Yuan, J. (2022) Microfluidic ElectrochemicalMagnetoimmunosensor for Ultrasensitive Detection of Interleukin-6 Basedon Hybrid of AuNPs and Graphene. Talanta, 240, 123173. DOI
  160. Guo, Y.-Z., Liu, J.-L., Chen, Y.-F., Chai, Y.-Q., Li, Z.-H., Yuan, R.(2022) Boron and Nitrogen-Codoped Carbon Dots as Highly EfficientElectrochemiluminescence Emitters for Ultrasensitive Detection of Hepatitis BVirus DNA. Anal. Chem., 94, 7601–7608. DOI
  161. Lu, Q., Su, T., Shang, Z., Jin, D., Shu, Y., Xu, Q., Hu, X. (2021) FlexiblePaper-Based Ni-MOF Composite/AuNPs/CNTs Film Electrode for HIVDNA Detection. Biosens. Bioelectron., 184, 113229. DOI
  162. Huang, S., Liu, Z., Yan, Y., Chen, J., Yang, R., Huang, Q., Jin, M., Shui, L.(2022) Triple signal-enhancing electrochemical aptasensor based on rhomboiddodecahedra carbonized-ZIF67 for ultrasensitive CRP detection. BiosensBioelectron., 207, 114129. DOI
  163. Xu, B. Z., Zhu, M. S., Zhang, W. C., Zhen, X., Pei, Z. X., Xue, Q., Zhi, C.Y., Shi, P. (2016) Ultrathin MXene-Micropattern-Based Field-Effect Transistorfor Probing Neural Activity. Adv. Mater., 28, 3333–3339. DOI
  164. Palanisamy, S. et al. (2023) One-step-one-pot hydrothermally derivedmetal-organic-framework-nanohybrids for integrated point-of-care diagnosticsof SARS-CoV-2 viral antigen/pseudovirus utilizing electrochemical biosensorchip. Sens. Actuators B, 390, 133960. DOI
  165. Dezhakam, E., Vayghan, R. F., Dehghani, S., Kafili-Hajlari, T., Naseri, A.,Dadashpour, M., Khalilzadeh, B., Kanberoglu, G. S. (2024) Highly efficientelectrochemical biosensing platform in breast cancer detection based on MOFCOF@Au core-shell like nanostructure. Sci. Rep., 14, 29850. DOI
  166. Chen, Z., Wu, C., Yuan, Y., Xie, Z., Li, T., Huang, H., Li, S., Deng, J., Lin,H., Shi, Z., et al. (2023) CRISPR-Cas13a-Powered Electrochemical Biosensorfor the Detection of the L452R Mutation in Clinical Samples of SARS-CoV-2Variants. J. Nanobiotechnol., 21, 141. DOI
  167. Cai, Q., Wu, D., Li, H., Jie, G., Zhou, H. (2021) VersatilePhotoelectrochemical and Electrochemiluminescence Biosensor Based on 3DCdSe QDs-DNA Nanonetwork-SnO2 Nanoflower Coupled with DNA WalkerAmplification for HIV Detection. Biosens. Bioelectron., 191, 113455. DOI
  168. Biswas, S., Lan, Q., Xie, Y., Sun, X., Wang, Y. (2021) Label-FreeElectrochemical Immunosensor for Ultrasensitive Detection of CarbohydrateAntigen 125 Based on Antibody-Immobilized Biocompatible MOF-808/CNT.ACS Appl. Mater. Interfaces, 13, 3295–3302. DOI
  169. Chen, G. et al. (2023) High-efficiency aluminum-metal organicframework/HEPES electrochemiluminescence system for ultrasensitivedetection of HBV DNA. Anal. Chem., 95, 7030–7035. DOI
  170. An, Y., Dong, S., Chen, H., Guan, L., Huang, T. (2022) Ce-MOF/COF/carbon nanotube hybrid composite: Construction of efficient electrochemicalimmune platform for amplifying detection performance of CA125.Bioelectrochemistry, 147, 108201. DOI
  171. Sobhanie, E., Salehnia, F., Xu, G., Hamidipanah, Y., Arshian, S.,Firoozbakhtian, A., Hosseini, M., Ganjali, M. R., Hanif, S. (2022) Recent Trendsand Advancements in Electrochemiluminescence Biosensors for Human VirusDetection. Trends Anal. Chem., 157, 116727. DOI
  172. Zhang, Y.-W., Liu, W.-S., Chen, J.-S., Niu, H.-L., Mao, C.-J., Jin, B.-K.(2020) Metal-organic gel and metal-organic framework based switchableelectrochemiluminescence RNA sensing platform for Zika virus. Sensor.Actuator. B Chem., 321, DOI
  173. Zhang, H.-J., Zhu, J., Bao, N., Ding, S.-N. (2021) Enhancedelectrochemiluminescence of CdS quantum dots capped with mercaptopropionicacid activated by EDC for Zika virus detection. Analyst, 146(9), 2928–2935. DOI
  174. Yang, T., Xu, C., Liu, C., Ye, Y., Sun, Z., Wang, B., Luo, Z. (2022)Conductive Polymer Hydrogels Crosslinked by Electrostatic Interaction withPEDOT:PSS Dopant for Bioelectronics Application. Chem. Eng. J., 429,132430. DOI
  175. Luo, G. (2019) Electrochemical Myoglobin Biosensor Based onMagnesium Metal-Organic Frameworks and Gold Nanoparticles CompositeModified Electrode. Int. J. Electrochem. Sci., 14, 2405–2413. DOI
  176. Li, S., Hu, C., Chen, C., Zhang, J., Bai, Y., Tan, C. S., Ni, G., He, F., Li,W., Ming, D. (2021) Molybdenum Disulfide Supported on Metal-OrganicFrameworks as an Ultrasensitive Layer for the Electrochemical Detection of theOvarian Cancer Biomarker CA125. ACS Appl. Bio Mater., 4, 5494–5502. DOI
  177. Xue, Y., Wang, Y., Feng, S., Yan, M., Huang, J., Yang, X. (2022) A Dual-Amplification Mode and Cu-Based Metal-Organic Frameworks MediatedElectrochemical Biosensor for Sensitive Detection of MicroRNA. Biosens.Bioelectron., 202, 113992. DOI
  178. Lu, J., Hu, Y., Wang, P., Liu, P., Chen, Z., Sun, D. (2020) ElectrochemicalBiosensor Based on Gold Nanoflowers-Encapsulated Magnetic Metal-OrganicFramework Nanozymes for Drug Evaluation with in-Situ Monitoring of H2O2Released from H9C2 Cardiac Cells. Sens. Actuators B, 311, 127909. DOI
  179. Du, L., Chen, W., Wang, J., Cai, W., Kong, S., Wu, C. (2019) Folic Acid-Functionalized Zirconium Metal-Organic Frameworks Based ElectrochemicalImpedance Biosensor for the Cancer Cell Detection. Sens. Actuators B, 301,127073. DOI
  180. Chang, J., Wang, X., Wang, J., Li, H., Li, F. (2019) Nucleic Acid-Functionalized Metal-Organic Framework-Based HomogeneousElectrochemical Biosensor for Simultaneous Detection of Multiple TumorBiomarkers. Anal. Chem., 91, 3604–3610. DOI
  181. Wang, L., Meng, T., Liang, L., Sun, J., Wu, S., Wang, H., Yang, X., Zhang,Y. (2019) Fabrication of Amine-Functionalized Metal-Organic Frameworkswith Embedded Palladium Nanoparticles for Highly Sensitive ElectrochemicalDetection of Telomerase Activity. Sens. Actuators B, 278, 133–139. DOI
  182. Huang, S., Lu, M., Wang, L. (2020) Cytochrome C-MultiwalledCarbon Nanotube and Cobalt Metal Organic Framework/Gold NanoparticleImmobilized Electrochemical Biosensor for Nitrite Detection. RSC Adv., 11,501–509. DOI
  183. Gupta, A., Bhardwaj, S. K., Sharma, A. L., Kim, K. H., Deep A. (2019)Development of an Advanced Electrochemical Biosensing Platform for E. coliUsing Hybrid Metal-Organic Framework/Polyaniline Composite. Environ. Res.,171, 395–402. DOI
  184. Yildirim, O., Derkus, B. (2020) Triazine-Based, 2D Covalent OrganicFrameworks Improve the Electrochemical Performance of EnzymaticBiosensors. J. Mater. Sci., 55, 3034–3044. DOI
  185. Xiao, Y., Wu, N., Wang, L., Chen, L. (2022) A Novel Paper-BasedElectrochemical Biosensor Based on N, O-Rich Covalent Organic Frameworksfor Carbaryl Detection. Biosensors, 12, 899. DOI
  186. Sun, X., Xie, Y., Chu, H., Long, M., Zhang, M., Wang, Y., Hu, X. (2022) AHighly Sensitive Electrochemical Biosensor for the Detection of HydroquinoneBased on a Magnetic Covalent Organic Framework and Enzyme for SignalAmplification. New J. Chem., 46, 11902–11909. DOI
  187. Li, H., Kou, B., Yuan, Y., Chai, Y., Yuan, R. (2022) Porous Fe3O4@COF-Immobilized Gold Nanoparticles with Excellent Catalytic Performancefor Sensitive Electrochemical Detection of ATP. Biosens. Bioelectron., 197,113758. DOI
  188. Han, Y., Lu, J., Wang, M., Sun, C., Yang, J., Li, G. (2022) AnElectrochemical Biosensor for Exosome Detection Based on Covalent OrganicFrameworks Conjugated with DNA and Horseradish Peroxidase. J. Electroanal.Chem., 920, 116576. DOI
  189. Liang, W., Carraro, F., Solomon, M. B., Bell, S. G., Amenitsch, H., et al.(2019) Enzyme encapsulation in a porous hydrogen-bonded organic framework.J. Am. Chem. Soc., 141, 36. DOI
  190. Li, P., He, Y., Guang, J., Weng, L., Zhao, J. C. G., et al. (2014) Ahomochiral microporous hydrogen-bonded organic framework for highlyenantioselective separation of secondary alcohols. J. Am. Chem. Soc., 136, 547. DOI
  191. Li, P., He, Y., Zhao, Y., Weng, L., Wang, H., et al. (2015) A rod-packingmicroporous hydrogen-bonded organic framework for highly selectiveseparation of C2H2/CO2 at room temperature. Angew. Chem. Int. Ed., 54, 574. DOI
  192. Wang, H., Li, B., Wu, H., Hu, T. L., Yao, Z. et al. (2015) A flexiblemicroporous hydrogen-bonded organic framework for gas sorption andseparation. J. Am. Chem. Soc., 137, 9963. DOI
  193. Yang, W., Yang, F., Hu, T. L., King, S. C., Wang, H. et al. (2016)Microporous diaminotriazine-decorated porphyrin-based hydrogen-bondedorganic framework: permanent porosity and proton conduction. Cryst. GrowthDes., 16, 5831. DOI
  194. Yuan, S., Zou, L., Qin, J. S., Li, J., Huang, L. et al. (2017) Constructionof hierarchically porous metal–organic frameworks through linker labilization.Nat. Commun., 8, 15356. DOI
  195. Wang, H., Bao, Z., Wu, H., Lin, R. B., Zhou, W. et al. (2017) Two solventinducedporous hydrogen-bonded organic frameworks: solvent effects onstructures and functionalities. Chem. Commun., 53, 11150. DOI
  196. Liu, B. T., Pan, X. H., Nie, D.Y., Hu, X. J., Liu, E. P., et al. (2020) Ionichydrogen-bonded organic frameworks for ion-responsive antimicrobialmembranes. Adv. Mater., 32, 48. DOI
  197. Wied, P., Carraro, F., Bolivar, J. M., Doonan, C. J., Falcaro, P., et al.(2022) Combining a genetically engineered oxidase with hydrogen-bondedorganic frameworks (HOFs) for highly efficient biocomposites. Angew. Chem.Int. Ed., 61, 16. doi: 10.1002/anie.202117345
  198. Yin, Q., Zhao, P., Sa, R. J., Chen, G. C., Lü, J. Liu, T. F., Cao, R. (2018) Anultra-robust and crystalline redeemable hydrogen-bonded organic frameworkfor synergistic chemo-photodynamic therapy. Angew. Chem. Int. Ed., 57,7691–7696. DOI
  199. Li, J., Chen, B. (2024) Flexible hydrogen-bonded organic frameworks(HOFs): opportunities and challenges. Chem. Sci., 15(26), 9874-9892. DOI
  200. Mohan, B., Singh, G., Gupta, R. K., Sharma P. K., Solovev A. A., PombeiroA. J. L., Ren P. (20245) Hydrogen-bonded organic frameworks (HOFs):Multifunctional material on analytical monitoring. TrAC Trends. Anal. Chem.,170, 117436. DOI
  201. Jiang, R., Luo, G., Chen, G., Lin, Y., Tong, L., Huang, A., Zheng, Y., Shen,Y., Huang, S., Ouyang G. (2024) Boosting the photocatalytic decontaminationefficiency using a supramolecular photoenzyme ensemble. Sci. Adv., 10(37),eadp1796. DOI
  202. Vijayakanth, T., Dasgupta, S., Ganatra, P., Rencus-Lazar, S., Desai, A. V.,Nandi, S., Jain, R., Bera, S., Nguyen, A. I., Gazit, E., Misra, R. (2024) Peptidehydrogen-bonded organic frameworks. Chem. Soc. Rev., 53(8), 3640-3655. DOI
  203. Chafiq, M., Chaouiki, A., Ko, Y. G. (2023) Recent Advances inMultifunctional Reticular Framework Nanoparticles: A Paradigm Shift inMaterials Science Road to a Structured Future. Nanomicro Lett., 15(1), 213. DOI
  204. Zhang, H.-Y., Yang, Y., Li, C.-C., Tang, H.-L., Zhang, F.-M., Zhang,G.-L., Yan, H. (2021) A new strategy for constructing covalently connectedMOF@ COF core–shell heterostructures for enhanced photocatalytic hydrogenevolution. J. Mater. Chem. A, 9, 16743. DOI
  205. Peng, Y., Zhao, M., Chen, B., Zhang, Z., Huang, Y., et al. (2018)Hybridization of MOFs and COFs: a new strategy for construction of MOF@COF core–shell hybrid materials. Adv. Mater., 30, 1705454. DOI
  206. Altintas, C., Erucar, I., Keskin, S. (2022) MOF/COF hybrids as nextgeneration materials for energy and biomedical applications. CrystEngComm,24(42), 7360-7371. DOI
  207. Cui, B., Fu, G. (2022) Process of metal-organic framework (MOF)/covalent-organic framework (COF) hybrids-based derivatives and theirapplications on energy transfer and storage. Nanoscale, 14(5), 1679-1699. DOI
  208. Liang, H., Wang, L., Yang, Y., Song, Y., Wang, L. (2021) A novelbiosensor based on multienzyme microcapsules constructed from covalentorganicframework. Biosens. Bioelectron., 193, 113553. DOI
  209. Hota, M. K. et al. (2022) Electrochemical thin-film transistors usingcovalent organic framework channel. Adv. Funct. Mater., 32, 2201120. DOI
  210. Daniel M., Mathew G., Anpo M., Neppolian B. (2022) MOF basedelectrochemical sensors for the detection of physiologically relevantbiomolecules: an overview. Coord. Chem. Rev., 468, 214627. DOI
  211. Wang, Z., Shi, X., Chen, F., Fan, G., Zhao, W. (2024) Ag/AgCl likephotogating of a COF on MOF heterojunction in organic photoelectrochemicaltransistor. Adv. Funct. Mater., 34, 2404497. DOI
  212. Lu, Z., Xu, K., Xiao, K. et al. (2025) Biomolecule sensors based on organicelectrochemical transistors. npj Flex Electron, 9, 9. DOI.org/10.1038/s41528-025-00383-x
  213. Sakata T. (2024) Signal transduction interfaces for field-effect transistorbasedbiosensors. Commun. Chem., 7, 35. DOI
  214. Deng, M., Li, J., Xiao, B., Ren, Z., Li, Z., Yu, H., Li, J., Wang, J., Chen, Z.,Wang, X. (2022) Ultrasensitive Label-Free DNA Detection Based on Solution-Gated Graphene Transistors Functionalized with Carbon Quantum Dots. Anal.Chem., 94, 3320. DOI
  215. Xu, M., Chen, K., Zhu, L., Zhang, S., Wang, M., He, L., Zhang,Z., Du, M. (2021) MOF@COF Heterostructure Hybrid for Dual-ModePhotoelectrochemical-Electrochemical HIV-1 DNA Sensing. Langmuir, 37,13479-13492. DOI
  216. Gao G. (2022) Hybridization chain reaction for regulating surfacecapacitance of organic photoelectrochemical transistor toward sensitive miRNAdetection. Biosens. Bioelectron., 209, 114224. DOI
  217. Dezhakam, E., Vayghan, R. F., Dehghani, S. et al. (2024) Highly efficientelectrochemical biosensing platform in breast cancer detection based on MOFCOF@Au core-shell like nanostructure. Sci. Rep., 14, 29850. DOI
  218. Fu, J., Das, S., Xing, G., Ben, T., Valtchev, V., Qiu, S. (2016) Fabricationof COF-MOF Composite Membranes and Their Highly Selective Separation ofH2/CO2. J. Am. Chem. Soc., 138, 7673-7680. DOI
  219. Zhou, N., Ma, Y., Hu, B., He, L., Wang, S., Zhang, Z., Lu, S. (2019)Construction of Ce-MOF@COF hybrid nanostructure: Label-free aptasensorfor the ultrasensitive detection of oxytetracycline residues in aqueoussolution environments. Biosens. Bioelectron., 127, 92-100. DOI
  220. Nakatani, R., Irie, T., Das, S., Fang, Q., Negish, Y. (2025) Converging theComplementary Traits of Metal–Organic Frameworks and Covalent OrganicFrameworks. ACS Appl. Mater. Interfaces, 17(17), 24701-24729. DOI
  221. Mondal, T., Haldar, D., Ghosh, A., Ghorai, U. K., Saha, S. K. (2020) AMOF functionalized with CdTe quantum dots as an efficient white light emittingphosphor material for applications in displays. New J. Chem., 44, 55–63. DOI
  222. Yang, Q., Wang, Q., Long, Y., Wang, F., Wu, L., Pan, J., et al. (2020) Insitu formation of Co9S8 quantum dots in MOF-derived ternary metal layereddouble hydroxide nanoarrays for high-performance hybrid supercapacitors. Adv.Energy. Mater., 10, 1903193. DOI
  223. Gui, B., Meng, Y., Xie, Y., Tian, J., Yu, G., Zeng, W., Zhang, G., Gong,S., Yang, C., Zhang, D., Wang, C. (2018) Tuning the Photoinduced ElectronTransfer in a Zr-MOF: Toward Solid-State Fluorescent Molecular Switch andTurn-On Sensor. Adv. Mater., 30(34), 1802329. DOI
  224. Huang, Z., Chen, H., Zhao, L., He, X., Fang, W., Du, Y., et al. (2018) CdSeQDs sensitized MIL-125/TiO2@SiO2 biogenic hierarchical composites withenhanced photocatalytic properties via two-level heterostructure. J. Mater. Sci.Mater. Electron., 29, 1245-12054. DOI
  225. Jin, M., Mou, Z. L., Zhang, R.-L., Liang, S. S., Zhang, Z. Q. (2017) Anefficient ratiometric fluorescence sensor based on metal-organic frameworksand quantum dots for highly selective detection of 6-mercaptopurine. Biosens.Bioelectron., 91, 162–168. DOI
  226. Li, Z., Bu, F., Wei, J., Yao, W., Wang, L., Chen, Z., et al. (2018) Boostingthe energy storage densities of supercapacitors by incorporating N-dopedgraphene quantum dots into cubic porous carbon. Nanoscale, 10, 22871–22883. DOI
  227. Li, Z., Liu, X., Wang, L., Bu, F., Wei, J., Pan, D., et al. (2018) Hierarchical3D all-carbon composite structure modified with N-doped graphene quantumdots for high-performance flexible supercapacitors. Small, 14, 1801498. DOI
  228. Sun Y., Zheng L., Yang Y. et al. (2020) Metal–Organic FrameworkNanocarriers for Drug Delivery in Biomedical Applications. Nano-Micro Lett.,12, 103. DOI
  229. Giri, L., Rout, S. R., Varma, R. S., Otyepka, M., Jayaramulu, K., Dandela,R. (2022) Recent advancements in metal–organic frameworks integratingquantum dots (QDs@MOF) and their potential applications. ScienceOpen, Inc.Nanotechnol. Rev., 11(1), 1947-1976. DOI
  230. Li, K., Ji, Q., Liang, H., Hua, Z., Hang, X., Zeng, L., Han, H.(2023) Biomedical application of 2D nanomaterials in neuroscience. J.Nanobiotechnology, 21, 181. DOI
  231. Wang, M., Nian, L., Cheng, Y., Yuan, B., Cheng, S., Cao, C. (2021)Encapsulation of Colloidal Semiconductor Quantum Dots into Metal-OrganicFrameworks for Enhanced Antibacterial Activity through Interfacial ElectronTransfer. Chem. Eng. J., 426 (5), 130832. DOI
  232. Li R., Qu X.-L., Zhang Y.-H., Han H.-L., Li X. (2016) Lanthanide–organicframeworks constructed from naphthalenedisulfonates: structure, luminescenceand luminescence sensing properties. CrystEngComm, 18, 5890. DOI
  233. Dong, J., Zhao, D., Lu, Y., Sun, W.-Y. (2019) Photoluminescent metal–organic frameworks and their application for sensing biomolecules. J. Mater.Chem. A, 7, 22744-22767. DOI
  234. Picchi, D. F., Biglione, C., Horcajada, P. (2023) Nanocomposites Basedon Magnetic Nanoparticles and Metal-Organic Frameworks for Therapy,Diagnosis, and Theragnostics. ACS Nanosci. Au., 4(2), 85-114. DOI
  235. Abdelhamid, H. N. (2021) Zeolitic Imidazolate Frameworks (ZIF-8) forBiomedical Applications: A Review. Curr. Med. Chem., 28(34), 7023-7075. DOI
  236. Hoseinpour, V., Shariatinia, Z. (2021) Applications of zeolitic imidazolateframework-8 (ZIF-8) in bone tissue engineering: A review. Tissue Cell, 72,101588. DOI
  237. Gatou, M. A., Vagena, I. A., Lagopati, N., Pippa, N., Gazouli, M.,Pavlatou, E. A. (2023) Functional MOF-Based Materials for Environmental andBiomedical Applications: A Critical Review. Nanomaterials (Basel), 13(15),2224. DOI
  238. Narea, P., Brito, I., Quintero, Y., Camú, E. (2023) Novel HydrophobicFunctionalized UiO-66 Series: Synthesis, Characterization, and Evaluation ofTheir Structural and Physical-Chemical Properties. Int. J. Mol. Sci., 25(1), 199. DOI
  239. Yang, P., Liu, Q., Liu, J., Zhang, H., Li, Z., Li, R., et al. (2017) Interfacialgrowth of a metal-organic framework (UiO-66) on functionalized grapheneoxide (GO) as a suitable seawater adsorbent for extraction of uranium(vi). J.Mater. Chem. A, 5, 17933–17942. DOI
  240. Yang, C., Shang, S., Gu, Q., Shang, J., Li, X. (2022) Metal-organicframework-derived carbon nanotubes with multi-active Fe-N/Fe sites as abifunctional electrocatalyst for zinc-air battery. J. Energy. Chem., 66, 306–313. DOI
  241. Wu, L. Y., Mu, Y. F., Guo, X. X., et al. (2019) Encapsulating PerovskiteQuantum Dots in Iron-Based Metal–Organic Frameworks (MOFs) for EfficientPhotocatalytic CO2 Reduction. Angew. Chem. Int. Ed., 58, 9491-9495. DOI
  242. Zhang, D., Zhao, J., Liu, Q., Xia, Z. (2019) Synthesis and luminescenceproperties of CsPbX3@Uio-67 composites toward stable photoluminescenceconvertors. Inorg. Chem., 58, 1690–1696. DOI
  243. Meng, X., Zhang, C., Zhuang, J., Zheng, G., Zhou, L. (2019) Metal-organicframework as nanoreactors to co-incorporate carbon nanodots and CdS quantumdots into the pores for improved H2 evolution without noble-metal cocatalyst.Appl. Catal. B. Environ., 244, 340–346. DOI
  244. Ren, J., Li, T., Zhou, X., Dong, X., Shorokhov, A. V., Semenov, M. B.,et al. (2019) Encapsulating all-inorganic perovskite quantum dots intomesoporous metal organic frameworks with significantly enhanced stabilityfor optoelectronic applications. Chem. Eng. J., 358, 30–39. DOI
  245. Mo, G., Qin, D., Jiang, X., Zheng, X., Mo, W., Deng, B. (2020) A sensitiveelectrochemiluminescence biosensor based on metal-organic frameworkand imprinted polymer for squamous cell carcinoma antigen detection. SensActuators B Chem., 310, 127852. DOI
  246. Wang, K., Li, N., Zhang, J., Zhang, Z. (2017) Size-selective QD@MOFcore-shell nanocomposites for the highly sensitive monitoring of oxidaseactivities. Biosens. Bioelectron., 87, 339–344. DOI
  247. Wang, H., Yuan, X., Wu, Y., Chen, X., Leng, L., Zeng, G. (2015)Photodeposition of metal sulfides on titanium metal-organic frameworks forexcellent visible-light-driven photocatalytic Cr(vi) reduction. RSC Adv., 5,32531–32535. DOI. org/10.1039/C5RA01283J
  248. Lin, R., Shen, L., Ren, Z., Wu, W., Tan, Y., Fu, H., Zhang, J., Wu, L. (2014)Enhanced photocatalytic hydrogen production activity via dual modification ofMOF and reduced graphene oxide on CdS. Chem Commun (Camb), 50(62),8533-8535. DOI
  249. Murugesan, A., Li, H., Shoaib, M. (2025) Recent Advances inFunctionalized Carbon Quantum Dots Integrated with Metal-OrganicFrameworks: Emerging Platforms for Sensing and Food Safety Applications.Foods, 14(12), 2060. DOI
  250. Rabiee, N., Bagherzadeh, M., Jouyandeh, M., Zarrintaj, P., Saeb, M.R., Mozafari, M., Shokouhimehr, M., Varma, R. S. (2021) Natural PolymersDecorated MOF-MXene Nanocarriers for Co-delivery of Doxorubicin/pCRISPR. ACS Appl. Bio. Mater., 4(6), 5106-5121. DOI
  251. Chang, Y., Lou, J., Yang, L., Liu, M., Xia, N, Liu, L. (2022) Design andApplication of Electrochemical Sensors with Metal–Organic Frameworks as theElectrode Materials or Signal Tags. Nanomaterials. (Basel), 12(18), 3248. DOI
  252. Alsaiari, S. K., Qutub, S. S., Sun, S., Baslyman, W., Aldehaiman, M.,Alyami, M., Almalik, A., Halwani, R., Merzaban, J., Mao, Z., Khashab, N. M.(2021) Sustained and targeted delivery of checkpoint inhibitors by metalorganicframeworks for cancer immunotherapy. Sci. Adv., 7(4), eabe7174. DOI
  253. Kamal, N. A., Abdulmalek, E., Fakurazi, S., Cordova, K. E., AbdulRahman, M. B. (2022) Dissolution and Biological Assessment of Cancer-Targeting Nano-ZIF-8 in Zebrafish Embryos. ACS Biomater. Sci. Eng., 8(6),2445-2454. DOI
  254. Gu, C., Guo, C., Li, Z., Wang, M., Zhou, N., He, L., et al. (2019) BimetallicZrHf-based metal-organic framework embedded with carbon dots: ultrasensitiveplatform for early diagnosis of HER2 and HER2-overexpressed livingcancer cells. Biosens. Bioelectron., 134, 8–15. DOI
  255. Freitas, M., Nouws, H. P., Keating, E., Delerue-Matos, C. (2020) Highperformanceelectrochemical immunomagnetic assay for breast cancer analysis.Sens. Actuators B. Chem., 308, 127667. DOI
  256. Ehzari, H., Samimi, M., Safari, M., Gholivand, M. B. (2020) Label-freeelectrochemical immunosensor for sensitive HER2 biomarker detection usingthe core-shell magnetic metal-organic frameworks. J. Electroanalytical. Chem.,877, 114722. DOI
  257. Xie, H., Liu, X., Huang, Z., Xu, L., Bai, R., He, F., Wang, M., Han, L., Bao,Z., Wu, Y., Xie, C., Gong, Y. (2022) Nanoscale Zeolitic Imidazolate Framework(ZIF)-8 in Cancer Theranostics: Current Challenges and Prospects. Cancers(Basel), 14(16), 3935. DOI
  258. Smith, B. R., Cheng, Z., De, A., Rosenberg J., Gambhir S. S. (2010)Dynamic visualization of RGD-quantum dot binding to tumor neovasculatureand extravasation in multiple living mouse models using intravital microscopy.Small, 6(20), 2222-2229. doi: 10.1002/smll.201001022
  259. Kamal, N., Abdulmalek, E., Fakurazi, S., Cordova, K. E., AbdulRahman, M. B. (2021) Surface peptide functionalization of zeoliticimidazolate framework-8 for autonomous homing and enhanced delivery ofchemotherapeutic agent to lung tumor cells. Dalton Trans., 50(7), 2375-2386. DOI
  260. Sameni, M., Moradbeigi, P., Hosseini, S., Ghaderian, S. M. H., Jajarmi,V., Miladipour, A. H., Basati, H., Abbasi, M., Salehi, M. (2024) ZIF-8Nanoparticle: A Valuable Tool for Improving Gene Delivery in Sperm-MediatedGene Transfer. Biol. Proced. Online, 26(1), 4. DOI
  261. Barkalina, N., Charalambous, C., Jones, C., Coward, K. (2014)Nanotechnology in reproductive medicine: emerging applications ofnanomaterials. Nanomed. Nanotechnol. Biol. Med., 10(5), e921–938. DOI
  262. Acharya, B., Behera, A., Behera, S., Moharana, S. (2024) Recent Advancesin Nanotechnology-Based Drug Delivery Systems for the Diagnosis andTreatment of Reproductive Disorders. ACS Applied Bio Materials, 7(3), 1336-1361. DOI
  263. Gu, C., Guo, C., Li, Z., Wang, M., Zhou, N., He, L., et al. (2019) BimetallicZrHf-based metal-organic framework embedded with carbon dots: ultrasensitiveplatform for early diagnosis of HER2 and HER2-overexpressed livingcancer cells. Biosens. Bioelectron., 134, 8–15. DOI
  264. Ehzari H., Amiri M., Safari M. (2020) Enzyme-free sandwich-typeelectrochemical immunosensor for highly sensitive prostate specific antigenbased on conjugation of quantum dots and antibody on surface of modifiedglassy carbon electrode with core–shell magnetic metal-organic frameworks.Talanta, 210, 120641. DOI
  265. Zhang, Q., Tian, Y., Liang, Z., Wang, Z., Xu, S., Ma, Q. (2021)DNA-mediated Au–Au dimerbased surface plasmon couplingelectrochemiluminescence sensor for BRCA1 gene detection. Anal. Chem.,93(6), 3308–3314.
  266. Ehzari, H., Safari, M., Samimi, M. (2021) Signal Amplification of NovelSandwich-Type Genosensor via Catalytic Redox-Recycling on PlatformMWCNTs/Fe3O4@TMU-21 for BRCA1 Gene Detection. Talanta, 234, 122698. DOI
  267. Freitas, M., Nouws, H. P., Keating, E., Delerue-Matos, C. (2020) Highperformanceelectrochemical immunomagnetic assay for breast cancer analysis.Sens. Actuators B. Chem., 308, 127667. DOI
  268. Li, Z., Peng, Y., Xia, X. et al. (2019) Sr/PTA Metal Organic Framework asA Drug Delivery System for Osteoarthritis Treatment. Sci. Rep., 9, 17570. DOI
  269. Dou, M., Sanjay, S. T., Dominguez, D. C., Liu, P., Xu, F., Li, X. (2017)Multiplexed instrument-free meningitis diagnosis on a polymer/paper hybridmicrofluidic biochip. J. Biosens. Bioelectron., 87, 865–873. DOI
  270. Pan, Y., Zhan, S., Xia, F. (2018) Zeolitic imidazolate framework-basedbiosensor for detection of HIV-1 DNA. Anal. Biochem, 546, 5-9. DOI
  271. Qin, L., Lin, L.-X., Fang, Z.-P., Yang, S.-P., Qiu, G.-H., Chen, J.-X.,Chen, W.-H. (2016) A water-stable metal–organic framework of a zwitterioniccarboxylate with dysprosium: a sensing platform for Ebolavirus RNAsequences. Chem. Commun., 52(1), 132-135. DOI
  272. Yang, S. P., Chen, S. R., Liu, S. W., Tang, X. Y., Qin, L., Qiu, G. H., Chen,J. X., Chen, W. H. (2015) Platforms formed from a three-dimensional Cubasedzwitterionic metal-organic framework and probe ss-DNA: selectivefluorescent biosensors for human immunodeficiency virus 1 ds-DNA and sudanvirus RNA sequences. Anal Chem., 87(24), 12206–12214. DOI
  273. Xie, B. P., Qiu, G. H., Hu, P. P., Liang, Z., Liang, Y. M., Sun, B., Bai, L.P., Jiang, Z. H., Chen, J. X. (2018) Simultaneous detection of Dengue andZika virus RNA sequences with a three-dimensional Cu-based zwitterionicmetal–organic framework, comparison of single and synchronous fluorescenceanalysis. Sensors Actuators, B Chem., 254, 1133–1140.
  274. Xie, B. P., Qiu, G. H., Sun, B., Yang, Z. F., Zhang, W. H., Chen, J. X., Jiang,Z. H. (2019) Synchronous sensing of three conserved sequences of Zika virususing a DNAs@MOF hybrid: Experimental and molecular simulation studies.Inorg. Chem. Front., 6(1), 148–152. DOI
  275. Luo, L., Zhang, F., Chen, C., Cai, C. (2020) Molecular imprintingresonance light scattering nanoprobes based on pH-responsive metal-organicframework for determination of hepatitis A virus. Microchim. Acta, 187, 1–8. DOI
  276. Zhang, H. T., Zhang, J. W., Huang, G., Du, Z. Y., Jiang, H. L. (2014) Anamine-functionalized metal-organic framework as a sensing platform for DNAdetection. Chem. Commun., 50(81), 12069–12072. DOI
  277. Yang, J., Feng, W, Liang, K, Chen, C, Cai, C. (2020) A novel fluorescencemolecularly imprinted sensor for Japanese encephalitis virus detection based onmetal organic frameworks and passivation-enhanced selectivity. Talanta, 212,120744. DOI
  278. Quijia, C. R., Alves, R. C., Hanck-Silva, G., Frem, R. C. G., Arroyos,G., Chorilli, M. (2022) Metal-organic frameworks for diagnosis andtherapy of infectious diseases. Crit. Rev. Microbiol, 48(2), 161-196. DOI
  279. Cai, M., Ni, B., Hu, X., Wang, K. et al. (2022) An Investigation ofIRMOF-16 as a pH-responsive Drug Delivery Carrier of Curcumin. J. Sci. Adv.Mater. Devices, 7(4), 100507. DOI
  280. Chen, G., Luo, J., Cai, M., Qin, L., Wang, Y., Gao, L., Huang, P., Yu, Y.,Ding, Y., Dong, X., et al. (2019) Investigation of Metal-Organic Framework-5(MOF-5) as an Antitumor Drug Oridonin Sustained Release Carrier. Molecules,24, 3369. DOI
  281. Trushina, D. B., Sapach, A. Y., Burachevskaia, O. A., Medvedev, P. V.,Khmelenin, D. N., Borodina, T. N., Soldatov, M. A., Butova, V. V. (2022)Doxorubicin-Loaded Core-Shell UiO-66@SiO2 Metal-Organic Frameworks forTargeted Cellular Uptake and Cancer Treatment. Pharmaceutics, 14, 1325. DOI
  282. Safinejad, M., Rigi, A., Zeraati, M., Heidary, Z., Jahani, S., Chauhan, N.P. S., Sargazi, G. (2022) Lanthanum-based metal organic framework (La-MOF)use of 3,4-dihydroxycinnamic acid as drug delivery system linkers in humanbreast cancer therapy. BMC Chem., 16, 93. DOI
  283. Liu, Y., Zhang, H., Chen, T., Xu, C., Bao, X. (2024) Metal-organicframeworks (MOFs) and their derivatives as emerging biomaterials for thetreatment of osteoarthritis. Front. Pharmacol., 15, 1462368. DOI
  284. Gatou, M. A., Vagena, I. A., Lagopati, N., Pippa, N., Gazouli, M.,Pavlatou, E. A. (2023) Functional MOF-Based Materials for Environmental andBiomedical Applications: A Critical Review. Nanomaterials (Basel), 13(15),2224. DOI
  285. Al Sharabati, M., Sabouni, R., Husseini, G. A. (2022) BiomedicalApplications of Metal−Organic Frameworks for Disease Diagnosis andDrug Delivery: A Review. Nanomaterials (Basel), 12(2), 277. DOI
  286. Sadiq, S., Khan, S., Khan, I., Khan, A., Humayun, M., Wu, P., Usman, M.,Khan, A., Alanazi, A. F., Bououdina, M. (2024) A critical review on metalorganicframeworks (MOFs) based nanomaterials for biomedical applications:Designing, recent trends, challenges, and prospects. Heliyon, 10(3), e25521. DOI
  287. Gatou, M. A., Vagena, I. A., Lagopati, N., Pippa, N., Gazouli, M.,Pavlatou, E. A. (2023) Functional MOF-Based Materials for Environmental andBiomedical Applications: A Critical Review. Nanomaterials (Basel), 13(15),2224. DOI
  288. Lu, K., Aung, T., Guo, N., Weichselbaum, R., Lin, W. (2018) NanoscaleMetal-Organic Frameworks for Therapeutic, Imaging, and SensingApplications. Adv. Mater., 30(37), e1707634. DOI
  289. Suresh, K., Matzger, A. J. (2019) Enhanced Drug Delivery by Dissolutionof Amorphous Drug Encapsulated in a Water Unstable Metal–OrganicFramework (MOF) Angew. Chem. Int. Ed., 131, 16946–16950. DOI
  290. Zhong, Y., Liu, W., Rao, C., Li, B., Wang, X., Liu, D., Pan, Y., Liu, J. (2021)Recent advances in Fe-mof compositions for biomedical applications. Curr.Med. Chem., 28(30), 6179–6198. DOI
  291. Luo, Z., Fan, S., Gu, C., Liu, W., Chen, J., Li, B., Liu, J. (2019) Metal–organic framework (MOF)-based nanomaterials for biomedical applications.Curr. Med. Chem., 26(18), 3341–3369. DOI
  292. Abdelhamid, H. N. (2019) Surfactant assisted synthesis of hierarchicalporous metal-organic frameworks nanosheets. Nanotechnology, 30(43), 435601. DOI
  293. Lawson, H. D., Walton, S. P., Chan, C. (2021) Metal–organic frameworksfor drug delivery: a design perspective. ACS Appl. Mater. Interfaces, 13(6),7004–7020. DOI
  294. Abánades Lázaro, I., Wells, C. J., Forgan, R. S. (2020) Multivariatemodulation of the zr MOF UiO-66 for defect‐controlled combinationanticancer drug delivery. Angew. Chem., 132(13), 5249–5255. DOI
  295. Osterrieth, J. W., Fairen-Jimenez, D. (2021) Metal–organic frameworkcomposites for theragnostics and drug delivery applications. Biotechnol J.,16(2), 2000005. DOI
  296. Gu, Z.-Y., Yang, C.-X., Chang, N., Yan, X.-P. (2012) Metal–organic frameworks for analytical chemistry: from sample collection tochromatographic separation. Acc. Chem. Res, 45(5), 734–745. DOI
  297. Gu, Z.-Y., Wang, G., Yan, X.-P. (2010) MOF-5 metal – organic frameworkas sorbent for in-field sampling and preconcentration in combination withthermal desorption GC/MS for determination of atmospheric formaldehyde.Anal Chem., 82(4), 1365–1370. DOI
  298. Wang, Z., Fu, Y., Kang, Z., Liu, X., Chen, N., Wang, Q., Tu, Y., Wang,L., Song, S., Ling, D. (2017) Organelle-specific triggered release ofimmunostimulatory oligonucleotides from intrinsically coordinated DNA–metal–organic frameworks with soluble exoskeleton. J. Am. Chem. Soc,139(44), 15784–15791. DOI
  299. Riccò R., Liang W., Li S., Gassensmith J. J., Caruso F., Doonan C.,Falcaro P. (2018) Metal–organic frameworks for cell and virus biology: aperspective. ACS Nano, 12(1), 13–23. DOI
  300. Li, R., Qu, X., Zhang, Y., Han, H., Li, X. (2016) Lanthanide–organicframeworks constructed from naphthalenedisulfonates: structure, luminescenceand luminescence sensing properties. CrystEngComm, 18, 5890. DOI
  301. Wu, M. X., Yang, Y. W. (2017) Metal–organic framework (MOF)-baseddrug/cargo delivery and cancer therapy. Adv. Mater., 29(23), 1606134. DOI
  302. Ren, H., Zhang, L., An, J., Wang, T., Li, L., Si, X., He, L., Wu, X., Wang, C.,Su, Z. (2014) Polyacrylic acid@ zeolitic imidazolate framework-8 nanoparticleswith ultrahigh drug loading capability for pH-sensitive drug release. Chem.Commun., 50(8), 1000–1002. DOI
  303. Bian, R., Wang, T., Zhang, L., Li, L., Wang, C. (2015) A combination of trimodalcancer imaging and in vivo drug delivery by metal–organic frameworkbased composite nanoparticles. Biomaterial. Sci., 3(9), 1270–1278. DOI
  304. Zhuang, J., Kuo, C.-H., Chou, L.-Y., Liu, D.-Y., Weerapana, E., Tsung,C.-K. (2014) Optimized Metal–Organic-Framework Nanospheres for DrugDelivery: Evaluation of Small-Molecule Encapsulation. ACS Nano, 8, 3,2812–2819. DOI
  305. Zhang, H., Chen, W., Gong, K., Chen, J. (2017) Nanoscale zeoliticimidazolate framework-8 as efficient vehicles for enhanced delivery of CpGoligodeoxynucleotides. ACS Appl. Mater. Interfaces, 9(37), 31519–31525. DOI
  306. Jiang, W., Zhang, H., Wu, J., Zhai, G., Li, Z., Luan, Y., Garg, S. (2018)CuS@MOF-Based Well-Designed Quercetin Delivery System for Chemo-Photothermal Therapy. ACS Appl. Mater. Interfaces, 10, 34513. DOI
  307. Lyu, F., Zhang, Y., Zare, R. N., Ge, J., Liu, Z. (2014) One-Pot Synthesisof Protein-Embedded Metal–Organic Frameworks with Enhanced BiologicalActivities. Nano Letters, 14(10), 5761–5765. DOI
  308. Abdelhamid, H. N. (2021) Zeolitic Imidazolate Frameworks (ZIF-8) forBiomedical Applications: A Review. Curr. Med. Chem., 28(34), 7023-7075. DOI
  309. Pan, Y. B., Wang, S., He, X., Tang, W., Wang, J., Shao, A., Zhang, J. (2019)A combination of glioma in vivo imaging and in vivo drug delivery by metalorganicframework based composite nanoparticles. J. Mater. Chem. B, 7(48),7683-7689. DOI
  310. Zhuang, D., Zhang, H., Genwen, Hu, G., Guo, B. (2022) Recentdevelopment of contrast agents for magnetic resonance and multimodal imagingof glioblastoma. J. Nanobiotechnology, 20(1), 284. DOI
  311. de Kraker, M. E. A., Stewardson, A. J., Harbarth, S. (2016) Will 10 MillionPeople Die a Year due to Antimicrobial Resistance by 2050? PLoS Med.,13(11), e1002184. DOI
  312. Anim, A., Mahmoud, L. A. M., Kelly, A. L., Katsikogianni, M. G., Nayak,S. (2023) Biodegradable Polymer Composites of Metal Organic Framework-5(MOF-5) for the Efficient and Sustained Delivery of Cephalexin andMetronidazole. Appl. Sci., 13(19), 10611. DOI
  313. Baptista, P. V., McCusker, M. P., Carvalho, A., Ferreira, D. A., Mohan, N.M., Martins, M., Fernandes, A. R. (2018) Nano-Strategies to Fight MultidrugResistant Bacteria-“A Battle of the Titans”. Front. Microbiol., 9, 1441. DOI
  314. Zhang, S., Ye, J., Liu, X., Wang, Y., Li, C., Fang, J., Chang, B., Qi, Y., Li, Y.,Ning, G. (2021) Titanium carbide/zeolite imidazole framework-8/polylactic acidelectrospun membrane for near-infrared regulated photothermal/photodynamictherapy of drug-resistant bacterial infections. J. Colloid. Interf. Sci., 599,390–403. DOI
  315. Seidi, F., Shamsabadi, A. A., Firouzjaei, M. D., Elliott, M., Saeb, M. R.,Huang, Y., Li, C., Xiao, H., Anasori, B. (2023) MXenes Antibacterial Propertiesand Applications: A Review and Perspective, 19(14), 2206716. DOI
  316. Zhou, X. M., Shen, Z. Y., Wu, Y. X., Lin, S., Wang, M. D., Xu, T., Wang, L.L., Sadiq, S., Jiao, X. H., Wu, P. (2024) Development of a rapid visual detectiontechnology for BmNPV based on CRISPR/Cas13a system. J. Invertebr. Pathol.,203, 108072. DOI
  317. Liu, F., Peng, J., Lei, Y.-M., Liu, R.-S., Jin, L., Liang, H., et al. (2022)Electrochemical detection of ctDNA mutation in non-small cell lung cancerbased on CRISPR/Cas12a system. Sens. Actuators B Chem., 362, 131807. DOI
  318. Yuan, B., Yuan, C., Li, L., Long, M., Chen, Z. (2022) Application of theCRISPR/Cas System in Pathogen Detection: A Review. Molecules, 27(20),6999. DOI
  319. Li, H., Yang, J., Wu, G., Weng, Z., Song, Y., Zhang, Y., Vanegas, J. A.,Avery, L., Gao, Z., Sun, H., Chen, Y., Dieckhaus, K. D. (2022) Amplification-Free Detection of SARS-CoV-2 and Respiratory Syncytial Virus Using CRISPRCas13a and Graphene Field-Effect Transistors. Angew. Chem. Int. Ed., 61(32),e202203826. DOI
  320. Zhang, X., Li, Z., Yang, L., Hu, B., Zheng, Q., Man, J., Cao, (2024) J.CRISPR/Cas12a-Derived Photoelectrochemical Aptasensor Based on AuNanoparticle-Attached CdS/UiO-66-NH2 Heterostructures for the Rapid andSensitive Detection of Ochratoxin A. J. Agric. Food. Chem., 72(1), 874-882. DOI
  321. Du, H., Yin, T., Wang, J., Jie, G. (2023) MultifunctionalPhotoelectrochemical Biosensor Based on ZnIn2S4/ZnS QDs@Au-Ag-Reversed Photocurrent of Cu-Metal-Organic Framework Coupled withCRISPR/Cas-12a-Shearing for Assay of Dual Targets. Anal. Chem., 95(17),7053-7061. DOI
  322. Kong, L., Zong, C., Chen, X., Xv, H., Lv, M., Li, C. (2024) CRISPR/Cas12atrans-cleavage mediated photoelectrochemical biosensor based on zeoliticimidazolate framework-67 for ATP determination. Mikrochim. Acta, 191(7),403. DOI
  323. Yan, X., Li, H., Yin, T., Jie, G., Zhou, H. (2022) Photoelectrochemicalbiosensing platform based on in situ generated ultrathin covalent organicframework film and AgInS2 QDs for dual target detection of HIV and CEA.Biosens. Bioelectron., 217, 114694. DOI
  324. Mousavi, S. M., Hashemi, S. A., Nezhad, F. F., Binazadeh, M.,Dehdashtijahromi, M., Omidifar, N., Ghahramani, Y., Lai, C. W., Chiang, W.-H.,Gholami, A. (2023) Innovative Metal-Organic Frameworks for Targeted OralCancer Therapy: A Review. Materials (Basel), 16(13), 4685. DOI
  325. Cai, M., Ni, B., Hu, X., Wang, K., Yin, D., Chen, G., Fu, T., Zhu, R., Dong,X., Qu, C., et al. (2022) An investigation of IRMOF-16 as a pH-responsivedrug delivery carrier of curcumin. J. Sci. Adv. Mater. Devices, 7, 100507. DOI
  326. Tan, G., Zhong, Y., Yang, L., Jiang, Y., Liu, J., Ren, F. (2020) Amultifunctional MOF-based nanohybrid as injectable implant platform for drugsynergistic oral cancer therapy. Chem. Eng. J., 390, 124446. DOI
  327. Yang, K., Yang, K., Chao, S., Wen, J., Pei, Y., Pei, Z. (2018) Asupramolecular hybrid material constructed from pillar [6] arene-based hostguestcomplexation and ZIF-8 for targeted drug delivery. Chem. Commun., 54,9817-9820. DOI
  328. Wu, M.-X., Yan, H.-J., Gao, J., Cheng, Y., Yang, J., Wu, J.-R. et al. (2018)Multifunctional Supramolecular Materials Constructed from Polypyrrole@UiO-66 Nanohybrids and Pillararene Nanovalves for Targeted ChemophotothermalTherapy. ACS Appl. Mater. Interfaces, 10, 34655-34663. DOI
  329. Wu, X., Zhang, Y., Lu, Y., Pang, S., Yang, K., Tian, Z. et al. (2017)Synergistic and targeted drug delivery based on nano-CeO2 capped withgalactose functionalized pillar[5]arenevia host-guest interactions. J. Mater.Chem. B, 5, 3483-3487. DOI
  330. Wu, M., Gao, J., Wang, F., Yang, J., Song, N., Jin, X. et al. (2018)Multistimuli Responsive Core-Shell Nanoplatform Constructed from Fe3O4@MOF Equipped with Pillar[6]arene Nanovalves. Small, 14, 1704440. DOI
  331. Yu, G., Yang, J., Fu, X., Wang, Z., Shao, L., Mao, Z. et al. (2018)Supramolecular Hybrid Material Constructed from Graphene Oxide andPillar[6]arene-Based Host-Guest Complex as a Ultrasound and PhotoacousticSignals Nanoamplifier. Mater. Horiz, 5, 429-435. DOI
  332. Yao, Y., Wang, Y., Huang, F. (2014) Synthesis of various supramolecularhybrid nanostructures based on pillar[6]arene modified gold nanoparticles/nanorods and their application in pH- and NIR-triggered controlled release.Chem. Sci., 5, 4312-4316. DOI. org/10.1039/C4SC01647E
  333. Tan, X., Zhang, Z., Cao, T., Zeng, W., Huang, T., Zhao, G. (2019)Control Assembly of Pillar[6]arene-Modified Ag Nanoparticles on CovalentOrganic Framework Surface for Enhanced Sensing Performance towardParaquat. ACS Sustain. Chem. Eng. 7(24), 20051–20059. DOI
  334. Zhang, Y., Li, Q., Liu, C., Shan, X., Chen, X., Dai, W., et al. (2018) Thepromoted effect of a metal–organic frameworks (ZIF-8) on Au/TiO2 for COoxidation at room temperature both in dark and under visible light irradiation.Appl. Catal. B, 224, 283–294. DOI
  335. Wang, W., Ibarlucea, B. C., Huang, R., Dong, Al., Aiti, M., Huang, S.,Cuniberti, G. (2024) Multi-metallic MOF based composites for environmentalapplications: synergizing metal centers and interactions. Nanoscale Horizons, 9,1432-1474. DOI
  336. Ahmadijokani, F., Ghaffarkhah, A., Molavi, H., Dutta, S., Yi, Lu, Wuttke,S., Kamkar, M., Rojas, O. J., Arjmand, M. (2024) COF and MOF Hybrids:Advanced Materials for Wastewater Treatment. Adv. Funct. Mater., 34(43),2305527. DOI
  337. Machado, T. F., Serra, M. E. S., Murtinho, D., Valente, A. J. M.,Naushad, M. (2021) Covalent Organic Frameworks: Synthesis, Propertiesand Applications—An Overview. Polymers, 13(6), 970. DOI