Металлорганические каркасные структуры в современных исследованиях: медицина, диагностика, экология
##plugins.themes.bootstrap3.article.main##
Аннотация
В обзоре представлены современные технологические разработки средств индикации вирусов и токсинов с применением новых наноматериалов на основе каркасных структур. Рассмотрены синтез и функционализация металлорганических соединений рамочной структуры (МОК) и ковалентных органических каркасов (СОF), а также последние достижения в биомедицинских областях, включая доставку грузов (лекарств, нуклеиновых кислот, белков и красителей) для терапии рака, биовизуализации, противомикробных препаратов, биосенсорики и биокатализа. Обсуждены новые тенденции и перспективные направления в развитии биомедицинских материалов на основе MOК/СОF. Представлены данные по применению новых биотехнологических направлений на основе полупроводниковых нанокристаллов (квантовых точек, КТ) и их композитов в составе МОК в решении задач современной диагностики заболеваний, играющих стратегическую роль в развитии нанотехнологии, биотехнологии и наномедицины. Обсуждаются вопросы, связанные с распознавание биомолекул с использованием гибридных наноструктур МОК/СОF, биосенсоры и иммунотерапию. Использование нанокомпозитов КТ с другими наноматериалами на основе углерода, графена или МОК позволило разработать новые системы для биовизуализации, терапевтической доставки, оптогенетики и тераностики. Несомненно, быстро накапливаемые данные о поведении КТ/МОК в аналитических системах in vitro будут способствовать приумножению знаний для продвижения КТ-нанотехнологий в исследованиях in vivo и в клинику.
##plugins.themes.bootstrap3.article.details##
Библиографические ссылки
- Mohammad, R. S., Navid, R., Masoud, M., Francis, V., Leonid, G. V., Rafael,L. (2021) Metal-organic frameworks (MOFs) for cancer therapy. Materials,14(23), 7277. DOI
- Kargozar, S., Hoseini, S. J., Milan, P. B., Hooshmand, S., Kim, H.-W.,Mozafari, M. (2020) Quantum Dots: A Review from Concept to Clinic. SpecialIssue: AFOB XV – Nanomaterials for Biomedical Applications, 15(12),2000117. DOI
- Liu, S.-L., Wang, Z.-G., Xie, H.-Y., Liu, An-An, Lamb, D. C., Pang,D.-W. (2020) Single-Virus Tracking: From Imaging Methodologies toVirological Applications. Chem. Rev., 120, 1936−1979. DOI
- Rehan, F., Zhang, M., Fang, J., Greish, K. (2024) Therapeutic Applicationsof Nanomedicine: Recent Developments and Future Perspectives. Molecules,29(9), 2073. DOI
- Cote, A. P., Benin, A. I., Ockwig, N. W., O’Keeffe, M., Matzger, A. J., Yaghi,O. M. (2005) Porous, crystalline, covalent organic frameworks. Science, 310,1166–1170. DOI
- Wu, J., Liu, H., Chen, W., Ma, B., Ju, H. (2023) Device integration ofelectrochemical biosensors. Nat. Rev. Bioeng, 1(5), 346-360. DOI
- Li, X., Zheng, X., Yuan, Y., Deng, J., Su, L., Xu, K. (2025) A review ofresearch progress on COF-based biosensors in pathogen detection. Anal. Chim.Acta, 1342, 343605. DOI
- Afshariazar, F., Morsali, A. (2021) A dual-response regenerable luminescent2D-MOF for nitroaromatic sensing via target-modulation of active interactionsites. J. Mater. Chem. C, 9, 12849–12858. DOI
- Huo, Y. P., Liu, S., Gao, Z. X., Ning, B. A., Wang, Y. (2021) State-of-the-artprogress of switch fluorescence biosensors based on metal-organic frameworksand nucleic acids. Mikrochim Acta, 188(5), 168. DOI
- Wang, X., Ye, N. (2017) Recent advances in metal-organic frameworksand covalent organic frameworks for sample preparation and chromatographicanalysis. Electrophoresis, 38(24), 3059-3078. DOI
- Zuliani, A., Khiar, N., Carrillo-Carrión, C. (2023) Recent progress ofmetal–organic frameworks as sensors in (bio)analytical fields: towards realworldapplications. Anal. Bioanal. Chem., 415, 2005–2023. DOI
- Liang, H., Wang, L., Yang, Y., Song, Y., Wang, L. (2021) A novelbiosensor based on multienzyme microcapsules constructed from covalentorganicframework. Biosens. Bioelectron., 193, 113553. DOI
- Yue, Y., Ji, D., Liu, Y., Wei, D. (2024) Chemical Sensors Based onCovalent Organic Frameworks. Chemistry, 30(3), e202302474. DOI
- Păun, C., Motelică, L., Ficai, D., Ficai, A., Andronescu, E. (2023) Metal-Organic Frameworks: Versatile Platforms for Biomedical Innovations. Materials(Basel), 16(18), 6143. DOI
- Theyagarajan, K., Kim, Y. J. (2023) Recent Developments in the Designand Fabrication of Electrochemical Biosensors Using Functional Materials andMolecules. Biosensors (Basel), 13(4), 424. DOI
- Deng, Y., Wang, Y., Xiao, X., Saucedo, B. J., Zhu, Z., Xie, M., Xu, X., Yao,K., Zhai, Y., Zhang, Z., Chen, J. (2022) Progress in Hybridization of CovalentOrganic Frameworks and Metal-Organic Frameworks. Small, 18(38), e2202928. DOI
- Saboorizadeh, B., Zare-Dorabei, R., Safavi, M., Safarifard, V. (2024)Applications of Metal-Organic Frameworks (MOFs) in Drug Delivery,Biosensing, and Therapy: A Comprehensive Review. Langmuir., 40(43), 22477-22503. DOI
- Moghadam, P. Z. Li, A. Wiggin, S. B. Tao, A. Maloney, A. G. P. Wood,P. A. Ward, S. C. Fairen-Jimenez, D. (2017) Development of a CambridgeStructural Database Subset: A Collection of Metal–Organic Frameworks forPast, Present, and Future. Chem. Mater, 29, 2618–2625. DOI
- Majumdar, S., Moosavi, S. M., Jablonka, K. M., Ongari, D., Smit, B. (2021)Diversifying Databases of Metal Organic Frameworks for High-ThroughputComputational Screening. ACS Appl. Mater. Interfaces, 13, 61004–61014. DOI
- Wang, Q., Sun, Y., Li, S., Zhang, P., Yao, Q. (2020) Synthesis andmodification of ZIF-8 and its application in drug delivery and tumor therapy.RSC Adv., 10, 37600-37620. DOI
- Dutta, A., Pan, Y., Liu, J.Q., Kumar, A. (2021) Multicomponent isoreticularmetal-organic frameworks: Principles, current status and challenges. Coord.Chem. Rev., 445, 214074. DOI
- Wang, B., Cote, A. P., Furukawa, H., O’Keeffe, M., Yaghi, O. M. (2002)Colossal cages in zeolitic imidazolate frameworks as selective carbon dioxidereservoirs. Nature, 453(7192), 207–211. DOI
- Latroche, M., Surble, S., Serre, C., Mellot-Draznieks, C., Llewellyn, P. L.,Lee, J. H., Chang, J. S., Jhung, S. H., Ferey, G. (2006) Hydrogen storage in thegiant-pore metal-organic frameworks MIL-100 and MIL-101. Angew. Chem.Int. Ed. Engl, 45(48), 8227–8231. DOI
- Ma, S., Sun, D., Simmons, J. M., Collier, C. D., Yuan, D. Q., Zhou, H. C.(2008) Metal-organic framework from an anthracene derivative containingnanoscopic cages exhibiting high methane uptake. J. Am. Chem. Soc, 130(3),1012–1016. DOI
- Cavka, J. H., Jakobsen, S., Olsbye, U., Guillou, N., Lamberti, C., Bordiga,S., Lillerud, K. P. (2008) A new zirconium inorganic building brick formingmetal organic frameworks with exceptional stability. J. Am. Chem. Soc,130(42), 13850–13851. DOI
- Jiao, L., Seow, J. Y. R., Skinner, W. S., Wang, Z. U., Jiang, H. L. (2019)Metal-organic frameworks: structures and functional applications. Mater. Today,27, 43–68. DOI
- Pashazadeh-Panahi, P., Belali, S., Sohrabi, H., Oroojalian, F., Hashemzaei,M., Mokhtarzadeh, A., de la Guardia, M. (2021) Metal-organic frameworksconjugated with biomolecules as efficient platforms for development ofbiosensors. TrAC Trends Anal. Chem., 141, 116285. DOI
- Jassal, A. K., Kajal, P. (2024). Quantum Dots@Metal–Organic FrameworksComposites. In: Thomas, S., Das, P., Ganguly, S. (eds) Quantum Dots BasedNanocomposites. Engineering Materials. Springer, Cham. DOI
- Jia, J., Zhang, S., Wen, K., Li, Q. (2019) Nano-scaled zeolitic imidazoleframework-8 as an efficient carrier for the intracellular delivery of RNase Ain cancer treatment. Int. J. Nanomedicine, 14, 9971–9981. DOI
- Teplensky, M. H., Fantham, M., Poudel, C., Hockings, C., Lu, M., Guna,A., Aragones-Anglada, M., Moghadam, P. Z., Li, P., Farha, O. K., Bernaldo deQuirós, F. S., Richards, F. M., Jodrell, D. I., Kaminski, S. G., Kaminski, C. F.,Fairen-Jimenez, D. (2019) A highly porous metal-organic framework systemto deliver payloads for gene knockdown. Chem., 5(11), 2926–2941. DOI
- Shi, L., Wu, J., Qiao, X., Ha, Y., Li, Y., Peng, C., Wu, R. (2020) In situbiomimetic mineralization on ZIF-8 for smart drug delivery. ACS Biomater. Sci.Eng, 6(8), 4595–4603. DOI
- Zhang, Y., Lai, L., Liu, Y., Chen, B., Yao, J., Zheng, P., Pan, Q., Zhu, W.(2022) Biomineralized cascade enzyme-encapsulated ZIF-8 nanoparticlescombined with antisense oligonucleotides for drug-resistant bacteria treatment.ACS Appl. Mater. Interfaces, 14(5), 6453–6464. DOI
- Abdelhamid, H. N., Dowaidar, M., Langel, Ü. (2020) Carbonized chitosanencapsulated hierarchical porous zeolitic imidazolate frameworks nanoparticlesfor gene delivery. Microporous Mesoporous Mater, 302, 110200. DOI
- Khalilian, S.F., Tohidi, M., Rastegari, B. (2020) Synthesis of abiocompatible nanoporous zeolitic imidazolate framework-8 in the presence ofGum Arabic inspired by the biomineralization process. CrystEngComm, 22(10),1875–1884. DOI
- Ren, L., Xiao, X., Chen, Y., Yu, Y., Zhang, Q., Liu, R., Xu, W. (2019)Preparation of ZIF-8/natural plant fiber composites via biomimeticmineralization for highly efficient removal of formaldehyde. ChemistrySelect,4(42), 12294–12303. DOI
- Velásquez-Hernández, M. J., Astria, E., Winkler, S., Liang, W., Wiltsche, H.,Poddar A., Shukla R., Prestwich G., Paderi J., Salcedo-Abraira P., AmenitschH., Horcajada P., Doonan, C. J., Falcaro, P. (2020) Modulation of metalazolateframeworks for the tunable release of encapsulated glycosaminoglycans.Chem Sci., 11(39), 10835–10843. DOI
- Li, S., Dharmarwardana, M., Welch, R. P., Ren, Y., Thompson, C. M.,Smaldone R. A., Gassensmith, J. J. (2016) Template-directed synthesis ofporous and protective core-shell bionanoparticles. Angew. Chem. Int. Ed. Engl,55(36), 10691–10696. DOI
- Liang, K., Richardson, J. J., Cui, J., Caruso, F., Doonan, C. J., Falcaro, P.(2016) Metal–organic framework coatings as cytoprotective exoskeletons forliving cells. Adv. Mater, 28(36), 7910–7914. DOI
- Liang, K., Richardson, J. J., Doonan, C. J., Mulet, X., Ju, Y., Cui, J.,Caruso, F., Falcaro, P. (2017) An enzyme-coated metal–organic frameworkshell for synthetically adaptive cell survival. angewandte chemie internationaledition. Angew. Chem. Int. Ed. Engl, 56(29), 8510–8515. DOI
- Li, Y., Zhang, K., Liu, P., Chen, M., Zhong, Y., Ye, Q., Wei, M. Q., Zhao, H.,Tang, Z. (2019) Encapsulation of plasmid DNA by nanoscale metal–organicframeworks for efficient gene transportation and expression. Adv. Mater,31(29), e1901570. DOI
- Polash, S. A., Garlick-Trease, K., Pyreddy, S., Periasamy, S., Bryant,G., Shukla, R. (2023) Amino acid-coated zeolitic imidazolate framework fordelivery of genetic material in prostate cancer cell. Molecules, 28(12), 4875. DOI
- Alyami, M. Z., Alsaiari, S. K., Li, Y., Qutub, S. S., Aleisa, F.A., Sougrat,R., Merzaban, J. S., Khashab, N. M. (2020) Cell-type-specific CRISPR/Cas9delivery by biomimetic metal organic frameworks. J. Am. Chem. Soc, 142(4),1715–1720. DOI
- Alsaiari, S. K., Patil, S., Alyami, M., Alamoudi, K. O., Aleisa, F. A.,Merzaban, J. S., Li, M., Khashab, N. M. (2018) Endosomal escape and deliveryof CRISPR/Cas9 genome editing machinery enabled by nanoscale zeoliticimidazolate framework. J. Am. Chem. Soc, 140(1), 143–146. DOI
- Liu, C., Xu, X., Koivisto, O., Zhou, W., Jacquemet, G., Rosenholm, J. M.,Zhang, H. (2021) Improving the knock-in efficiency of the MOF-encapsulatedCRISPR/Cas9 system through controllable embedding structures. Nanoscale,13(39), 16525–16532. DOI
- Poddar, A., Pyreddy, S., Carraro, F., Dhakal, S., Rassell, A., Field, M. R.,Reddy, T. S., Falcaro, P., Doherty, C. M., Shukla, R. (2020) ZIF-C for targetedRNA interference and CRISPR/Cas9 based gene editing in prostate cancer.Chem. Commun. (Camb), 56(98), 15406–15409. DOI
- Lee, H. J., Wark, A. W., Corn, R. M. (2008) Microarray methods for proteinbiomarker detection. Analyst, 133, 975. DOI
- Tran, V. A., Le, V. T., Doan, V. D., Giang, N. L. Vo. (2023) Utilization ofFunctionalized Metal-Organic Framework Nanoparticle as Targeted DrugDelivery System for Cancer Therapy. Pharmaceutics, 15(3), 931. DOI
- Smith, G. P. (1985) Filamentous fusion phage: novel expression vectors thatdisplay cloned antigens on the virion surface. Science, 228(4705), 1315-1317. DOI
- Petrenko, V. A., Smith, G. P. (2000) Phages from landscape libraries assubstitute antibodies. Protein Eng, 13, 589–592. DOI
- Zhang, W., Arramel, A., Wong, P. K. J., Zhang, L., Zheng, J., Zhang, W.,Zhang, H., Yan, X., Qi, J., Li, J. (2020) Core–shell hybrid zeolitic imidazolateframework-derived hierarchical carbon for capacitive deionization. J. Mater.Chem. A, 8, 14653–14660. DOI
- Biswal, B. P., Shinde, D. B., Pillai, V. K., Banerjee, R. (2013) Stabilizationof graphene quantum dots (GQDs) by encapsulation inside zeolitic imidazolateframework nanocrystals for photoluminescence tuning. Nanoscale, 5, 10556–10561. DOI
- Reali, S., Najib, E. Y., Treuerné Balázs, K. E., Tan, A. C. H., Váradi, L.,Hibbs, D. E., Groundwater, P. W. (2019) Novel diagnostics for point-of-carebacterial detection and identification. RSC Adv, 9, 21486-21497. DOI
- Davydova, A., Vorobjeva, M., Pyshnyi, D., Altman, S., Vlassov, V.,Venyaminova, A. (2016) Aptamers against pathogenic microorganisms. Crit.Rev. Microbiol, 42(6), 847–865. DOI
- Anderson, G. P., Glaven, R. H., Algar, W. R., Susumu, K., Stewart, M. H.,Medintz, I. L., Goldman, E. R. (2013) Single domain antibody–quantum dotconjugates for ricin detection by both fluoroimmunoassay and surface plasmonresonance. Anal. Chim. Acta, 786, 132–138. DOI
- Fetter, L., Richards, J., Daniel, J., Roon, L., Rowland, T. J., Bonham, A. J.(2015) Electrochemical aptamer scaffold biosensors for detection of botulismand ricin toxins. Chem. Commun., 51, 15137–15140. DOI
- Lamont, E. A., He, L. L., Warriner K., Labuza, T. P., Sreevatsan, S. (2011) Asingle DNA aptamer functions as a biosensor for ricin. Analyst, 136, 3884–3895. DOI
- Guryev, E.L., Shanwar, S., Zvyagin, A.V., Deyev, S.M., Balalaeva, I.V.(2021) Photoluminescent Nanomaterials for Medical Biotechnology. ActaNaturae, 13(2), 16-31. DOI
- Park, J. W., Lee, S. J., Choi, E. J., Kim, J., Song, J. Y., Gu, M. B. (2014)An ultra-sensitive detection of a whole virus using dual aptamers developedby immobilization-free screening. Biosens. Bioelectron., 51, 324-329. DOI
- Tumanov, Yu.V., Boldyrev, A.N., Autenshlyus, A.I. Medical biotechnology:diagnostics of diseases and development of drugs, NGTU, Novosibirsk, 2016,214 pp.
- Bi, S., Yue, S., Zhang, S. (2017) Hybridization chain reaction: a versatilemolecular tool for biosensing, bioimaging, and biomedicine. Chem. Soc. Rev.,46(14), 4281-4298. DOI
- Bardajee, G. R., Zamani, M., Mahmoodian, H., Elmizadeh, H., Yari,H., Jouyandeh, L., Shirkavand, R., Sharifi, M. (2022) Capability of novelfluorescence DNA-conjugated CdTe/ZnS quantum dots nanoprobe forCOVID-19 sensing. Spectrochim. Acta A. Mol. Biomol. Spectrosc, 269,120702. DOI
- Hötzer, B., Medintz, I. L., Hildebrandt, N. (2012) Fluorescence inNanobiotechnology: Sophisticated Fluorophores for Novel Applications. Small,8, 2297. DOI
- Dasilva, N., Díez, P., Matarraz, S., González-González, M., Paradinas, S.,Orfao, A., Fuentes, M. (2012) Biomarker Discovery by Novel Sensors Based onNanoproteomics Approaches. Sensors, 12, 2284. DOI
- Sandana Mala, J. G., Rose, C. (2014) Facile production of ZnS quantumdot nanoparticles by Saccharomyces cerevisiae MTCC 2918. J. Biotechnol, 170,73–78. DOI
- Zorab, M. M., Mohammadjani, N., Ashengroph, M., Alavi, M. (2023)Biosynthesis of Quantum Dots and Their Therapeutic Applications in theDiagnosis and Treatment of Cancer and SARS-CoV-2. Adv. Pharm. Bull, 13(3),411–422. DOI
- Dabbousi, B. O., Rodriguez-Viejo, J., Mikulec, F. V., Heine, J. R.,Mattoussi, H., Ober, R., Jensen, K. F., Bawendi, M. G. (1997) (CdSe) ZnScore−shell quantum dots: synthesis and characterization of a size series ofhighly luminescent nanocrystallites. J. Phys. Chem., B, 101, 9463–9475. DOI
- Wang, J., Mora-Seró, I., Pan, Z., Zhao, K., Zhang, H., Feng, Y., Yang, G.,Zhong, X., Bisquert, J. (2013) Core/shell colloidal quantum dot exciplex statesfor the development of highly efficient quantum-dot-sensitized solar cells. J.Am. Chem. Soc, 135, 15913. DOI
- Kaur, A., Dhakal, S. (2020) Recent applications of FRET-based multiplexedtechniques. Trac-Trends Anal. Chem., 123, 115777. DOI
- Racca, L., Cauda, V. (2021) Remotely Activated Nanoparticles forAnticancer Therapy. Nano-Micro Lett, 13, 11. DOI
- Lidke, D. S., Nagy, P., Heintzmann, R., Arndt-Jovin, D. J., Post, J. N.,Grecco, H. E., Jares-Erijman, E. A., Jovin, T. M. (2004) Quantum Dot LigandsProvide New Insights into erbB/HER Receptor−Mediated Signal Transduction.Nat. Biotechnol, 22, 198−203. DOI
- Srinivasan, C., Lee, J., Papadimitrakopoulos, F., Silbart, L. K., Zhao, M.,Burgess, D. J. (2006) Labeling and Intracellular Tracking of Functionally ActivePlasmid DNA with Semiconductor Quantum Dots. Mol. Ther, 14, 192−201. DOI
- Wu, X., Liu, H., Liu, J., Haley, K. N., Treadway, J. A., Larson, J. P., Ge, N.,Peale, F., Bruchez, M. P. (2003) Immunofluorescent Labeling of Cancer MarkerHer2 and Other Cellular Targets with Semiconductor Quantum Dots. Nat.Biotechnol, 21, 41−46. DOI
- Chen, C., Peng, J., Xia, H., Wu, Q., Zeng, L., Xu, H., Tang, H., Zhang,Z., Zhu, X., Pang, D., et al. (2010) Quantum-Dot-Based ImmunofluorescentImaging of HER2 and ER Provides New Insights into Breast CancerHeterogeneity. Nanotechnology, 21, 095101. DOI
- Chen, C., Xia, H. S., Gong, Y. P., Peng, J., Peng, C. W., Hu, M. B., Zhu, X.B., Pang, D. W., Sun, S. R., Li, Y. (2010) The Quantitative Detection of TotalHER2 Load by Quantum Dots and the Identification of a New Subtype ofBreast Cancer with Different 5-Year Prognosis. Biomaterials, 31, 8818−8825. DOI
- Chen, C., Liu, S. L., Cui, R., Huang, B. H., Tian, Z. Q., Jiang, P., Pang, D.W., Zhang, Z. L. (2008) Diffusion Behaviors of Water-Soluble CdSe/ZnS Core/Shell Quantum Dots Investigated by Single-Particle Tracking. J. Phys. Chem. C,112(48), 18904−18910. DOI. org/10.1021/jp807074t
- Gao, X., Wang, T., Wu, B., Chen, J., Chen, J., Yue, Y., Dai, N., Chen, H.,Jiang, X. (2008) Quantum Dots for Tracking Cellular Transport of Lectin-Functionalized Nanoparticles. Biochem. Biophys. Res. Commun., 377, 35−40. DOI
- Liu, S.-L., Wang, Z.-G., Xie, H.-Y., Liu, A.-A., Lamb, D. C., Pang,D.-W. (2020) Single-Virus Tracking: From Imaging Methodologies toVirological Applications. Chem. Rev., 120, 1936−1979. DOI
- Kargozar, S., Hoseini, S. J., Milan, P. B., Hooshmand, S., Kim, H.-W.,Mozafari, M. (2020) Quantum Dots: A Review from Concept to Clinic.Biotechnol. J., 15(12), e2000117. DOI
- Lim, J., Bae, W. K., Kwak J., Lee, S., Lee, C., Char, K. (2012) Towardszero-threshold optical gain using charged semiconductor quantum dots. Optical.Mater. Express, 2, 594-698. DOI
- Vasil’ev, R. B., Dirin, D. N. Kvantovye tochki: sintez, svojstva, primenenie,Metodicheskie materialy. MGU im. M.V. Lomonosova: Moskva, 2007. 34 s.
- Poddar, A., Conesa, J. J., Liang, K., Dhakal, S., Reineck, P., Bryant, G.,Pereiro, E., Ricco, R., Amenitsch, H., Doonan, C., Mulet, X., Doherty, C. M.,Falcaro, P., Shukla, R. (2019) Encapsulation, visualization and expression ofgenes with biomimetically mineralized zeolitic imidazolate framework-8 (ZIF-8). Small, 15(36), e1902268. DOI
- Maysinger, D., Ji, J., Hutter, E., Cooper, E. (2015) Nanoparticle-Based andBioengineered Probes and Sensors to Detect Physiological and PathologicalBiomarkers in Neural Cells. Front. Neurosci, 9, 480. DOI
- Liu, T., Xing, R., Zhou, Y.-F., Zhang, J., Su, Y.-Y., Zhang, K.-Q., He, Y.,Sima, Y.-H., Xu, S.-Q. (2014) Hematopoiesis toxicity induced by CdTe quantumdots determined in an invertebrate model organism. Biomaterials, 35, 2942. DOI
- Xu, G., Zeng, S., Zhang, B., Swihart, M. T., Yong, K.-T., Prasad, P. N.(2016) New Generation Cadmium-Free Quantum Dots for Biophotonics andNanomedicine. Chem. Rev., 116, 12234. DOI
- Khan, Z. U., Khan, L. U., Brito, H. F., Gidlund, M., Malta, O. L., DiMascio, P. (2023) Colloidal Quantum Dots as an Emerging Vast Platform andVersatile Sensitizer for Singlet Molecular Oxygen Generation. ACS Omega,8(38), 34328-34353. DOI
- Liu, S.-L., Wang, Z.-G., Xie, H.-Y., Liu, A.-A., Lamb, D. C., Pang,D.-W. (2020) Single-Virus Tracking: From Imaging Methodologies toVirological Applications. Chem. Rev., 120(3), 1936–1979. DOI
- Bilan, R., Nabiev, I., Sukhanova, A. (2016) Quantum Dot-Based Nanotoolsfor Bioimaging, Diagnostics, and Drug Delivery. Chembiochem, 17(22), 2103-2114. DOI
- Srinivasan, C., Lee, J., Papadimitrakopoulos, F., Silbart, L. K., Zhao, M.,Burgess, D. J. (2006) Labeling and intracellular tracking of functionally activeplasmid DNA with semiconductor quantum dots. Mol. Ther, 14, 192–201. DOI
- Shirahata, N. Nanoparticle Biomarkers Adapted for Near-InfraredFluorescence Imaging. In: Wakayama, Y., Ariga, K. (eds) System-MaterialsNanoarchitectonics. NIMS Monographs. Springer: Tokyo, 2022. DOI
- Păun, C., Motelică, L., Ficai, D., Ficai, A., Andronescu, E. (2023) Metal-Organic Frameworks: Versatile Platforms for Biomedical Innovations. Materials(Basel), 16(18), 6143. DOI
- Alli, U., Hettiarachchi, S., Kellici, S. (2020) Chemical Functionalisation of2D Materials by Batch and Continuous Hydrothermal Flow Synthesis. Chem.–Eur. J., 26, 6447–6460. DOI
- Abderrahmane, A., Woo, C., Ko, P.-J. (2022) Low Power ConsumptionGate-Tunable WSe2/SnSe2 van der Waals Tunnel Field-Effect Transistor.Electronics, 11(5), 833. DOI
- Abderrahmane, A., Jung, P.-G., Woo, C., Ko, P. J. (2022) Effect of GateDielectric Material on the Electrical Properties of MoSe2-Based Metal–Insulator–Semiconductor Field-Effect Transistor. Crystals, 12(9), 1301. DOI
- Vu, C-A., Chen, W-Y. (2019) Field-effect transistor biosensors forbiomedical applications: recent advances and future prospects. Sensors, 19(19),4214. DOI
- Vu, C. A., Chen, W. Y. (2020) Predicting Future Prospects of Aptamersin Field-Effect Transistor Biosensors. Molecules, 25(3), 680. DOI
- Syedmoradi, L., Ahmadi, A., Norton, M. L., Omidfar, K. (2019) A review onnanomaterial-based field effect transistor technology for biomarker detection.Mikrochim Acta, 186(11), 739. DOI
- Panahi, A., Sadighbayan, D., Forouhi, S., Ghafar-Zadeh, E. (2021) RecentAdvances of Field-Effect Transistor Technology for Infectious Diseases.Biosensors (Basel), 11(4), 103. DOI
- Fazio, E., Spadaro, S., Corsaro, C., Neri, G, Leonardi, S. G., Neri, F.,Lavanya, N., Sekar, C., Donato, N., Neri, G. (2021) Metal-Oxide BasedNanomaterials: Synthesis, Characterization and Their Applications in Electricaland Electrochemical Sensors. Sensors (Basel), 21(7), 2494. DOI
- Bungon, T., Haslam, C., Damiati, S., O’Driscoll, B., Whitley, T., Davey,P., Siligardi, G., Charmet, J., Awan, S. A. (2021) Graphene FET Sensors forAlzheimer’s Disease Protein Biomarker Clusterin Detection. Front. Mol.Biosci., 8, 651232. DOI
- Ivanov, Yu. D., Pleshakova, T. O., Kozlov, A. F., Malsagova, K. A., Krohin,N. V., Shumyantseva, V. V., Shumov, I. D., Popov, V. P., Naumova, O. V., Fomin,B. I., Nasimov, D. A., Aseev, A. L., Archakov, A. I. (2012) SOI nanowire for thehigh-sensitive detection of HBsAg and α-fetoprotein. Lab on a Chip, 12(23),5104-5111. DOI
- Zhang, G.-J., Zhang, L., Huang, M. J., Luo, Z. H. H., Tay, G. K. I., Lim,E.-J. A., Kang, T. G., Chen Y. (2010) Silicon nanowire biosensor for highlysensitive and rapid detection of Dengue virus. Sens. Actuators B, 146, 138–144. DOI
- Su, P.-C., Chen, B.-H., Lee, Y.-C., Yang, Y.-S. (2020) Silicon NanowireField-Effect Transistor as Biosensing Platforms for Post-TranslationalModification. Biosensors, 10, 213. DOI
- Jin, Q., Men, K., Li, G., Ou, T., Lian, Z., Deng, X., Zhao, H., Zhang, Q.,Ming, A., Wei, Q., Wei, F., Tu, H. (2024) Ultrasensitive Graphene Field-EffectBiosensors Based on Ferroelectric Polarization of Lithium Niobate for BreastCancer Marker Detection. ACS Appl. Mater. Interfaces, 16(22), 28896–28904. DOI
- Xu, B. Z., Zhu, M. S., Zhang, W. C., Zhen, X., Pei, Z. X., Xue, Q., Zhi C.Y., Shi, P. (2016) Ultrathin MXene-Micropattern-Based Field-Effect Transistorfor Probing Neural Activity. Adv. Mater, 28, 3333–3339. DOI
- Mostafavi, E., Iravani, S. (2022) MXene-Graphene Composites: APerspective on Biomedical Potentials. Nanomicro Lett, 14(1), 130. DOI
- Li, Y., Peng, Z, Holl, N. J., Hassan, M. R., Pappas, J. M., et al. (2021)MXene-graphene field-effect transistor sensing of influenza virus and SARSCoV-2. ACS Omega, 6(10), 6643–6653. DOI
- Gu, H., Xing, Y., Xiong, P., Tang, H., Li, C., et al. (2019) Threedimensionalporous Ti3C2Tx MXene-graphene hybrid films for glucosebiosensing. ACS Appl. Nano Mater, 2(10), 6537–6545. DOI
- Ryder, C. R., Wood, J. D., Wells, S.A., Hersam, M. C. (2016) Chemicallytailoring semiconducting two-dimensional transition metal dichalcogenides andblack phosphorus. ACS Nano, 10, 3900–3917. DOI
- Wen, W., Song, Y., Yan, X., Zhu, C., Du, D., Wang, S., Asiri, A. M., Lin,Y. (2018) Recent advances in emerging 2D nanomaterials for biosensingand bioimaging applications. Mater. Today, 21, 164–177. DOI
- Xu, B. Z., Zhu, M. S., Zhang, W. C., Zhen, X., Pei, Z. X., Xue, Q., Zhi, C.Y., Shi, P. (2016) Ultrathin MXene-Micropattern-Based Field-Effect Transistorfor Probing Neural Activity. Adv. Mater, 28, 3333–3339. DOI
- Ge, Q., Li, C, Fan, Z., Xia, B., Zang, C., Chen, L., Zhao, C., Sang, H.,Wang, A. (2024) Nanoflower-shaped MXene-based field-effect transistorcapable of ultrasensitive microRNA-21 determination towards efficient lungcancer diagnosis. New J. Chem., 48, 9474–9479. DOI
- Qiao, Q., Wang, J., Li, B. (2024) Ti3C2Tx MXene nanosheet-baseddrug delivery/cascaded enzyme system for combination cancer therapyand anti-inflammation. Appl. Mater. Today, 38, 102215. DOI
- Qu, L., Wu, M., Zhao, L. (2023) A sandwich electrochemical immunosensorbased on MXene@dual MOFs for detection of tumor marker CA125.Microchimica Acta, 190, 147. DOI
- Majd, S. M., Salimi, A., Ghasemi, F. (2018) An ultrasensitive detectionof miRNA-155 in breast cancer via direct hybridization assay using twodimensional molybdenum disulfide field-effect transistor biosensor. Biosens.Bioelectron., 105, 6–13. DOI
- Lin, S., Chen, Y., Li, H., Wang, W., Wang, Y., Wu, M. (2024) Applicationof metal-organic frameworks and their derivates for thermal-catalyticC1 molecules conversion. iScience, 27(5), 109656. DOI
- Wang, Y., Sun, J., Tsubaki, N. (2023) Clever nanomaterials fabricationtechniques encounter sustainable C1 catalysis. Acc. Chem. Res, 56, 2341–2353. DOI
- Kreno, L. E., Leong, K., Farha, O. K., Allendorf, M., Van Duyne, R. P.,Hupp, J. T. (2012) Metal-organic framework materials as chemical sensors.Chem. Rev., 112, 1105–1125. DOI
- Yao, M. S., Lv, X.J., Fu, Z. H., Li, W. H., Deng, W. H., Wu, G. D., Xu, G.(2017) Layer-by-Layer Assembled Conductive Metal-Organic FrameworkNanofilms for Room-Temperature Chemiresistive Sensing. Angew. Chem., 56,16510–16514. DOI
- Barr, M. K. S., Nadiri, S., Chen, D. H., Weidler, P. G., Bochmann,S., Baumgart, H., Bachmann, J., Redel, E. (2022) Solution Atomic LayerDeposition of Smooth, Continuous, Crystalline Metal-Organic Framework ThinFilms. Chem. Mater., 34(22), 9836-9843. DOI
- Guo, L., Yang, L., Li, M., Kuang, L., Song, Y., Wang, L. (2021) Covalentorganic frameworks for fluorescent sensing: Recent developments and futurechallenges. Coord. Chem. Rev., 440, 213957. DOI
- Li, S. M., Zou, J., Tan, L. F., Huang, Z. B., Liang, P., Meng, X. W. (2022)Covalent organic frameworks: From linkages to biomedical applications. Chem.Eng. J., 446, 137148. DOI
- Shi, Y. Q., Yang, J. L., Gao, F., Zhang, Q. C. (2023) Covalent prganicframeworks: Recent progress in biomedical applications. ACS Nano, 17,1879–1905. DOI
- Akyuz, L. (2020) An imine based COF as a smart carrier for targeted drugdelivery: From synthesis to computational studies. Microporous MesoporousMater, 294, 109850. DOI
- Scicluna, M. C. Vella-Zarb, L. (2020) Evolution of nanocarrier drugdeliverysystems and recent advancements in covalent organic framework–drugsystems. ACS Appl. Nano Mater, 3, 3097–3115. DOI
- Jin, M., Zhao, Y. Y., Guan, Z. J., Fang, Y. (2023) Porous FrameworkMaterials for Bioimaging and Cancer Therapy. Molecules, 28, 1360. DOI
- Ma, J. X., T. Shu, T., Sun, Y. P., Zhou, X., Ren, C. Y., Su, L., Zhang, X.J. (2022) Luminescent Covalent Organic Frameworks for Biosensing andBioimaging Applications. Small, 18, 2103516. DOI
- Bagheri, A. R., Li, C. J., Zhang, X. L., Zhou, X. X., Aramesh, N., Zhou,H. Y., Jia, J. B. (2021) Recent advances in covalent organic frameworks forcancer diagnosis and therapy. Biomater. Sci., 9, 5745–5761. DOI
- Das, S. K., Roy, S., Das, A., Chowdhury, A., Chatterjee, N., Bhaumik, A.(2022) A conjugated 2D covalent organic framework as a drug delivery vehicletowards triple negative breast cancer malignancy. Nanoscale Adv., 4, 2313–2320. DOI
- Yue, Y., Ji, D., Liu, Y., Wei, D. (2024) Chemical Sensors Based onCovalent Organic Frameworks. Chemistry, 30(3), e202302474. DOI
- Cote, A. P., Benin, A. I., Ockwig, N. W., O’Keeffe, M., Matzger, A. J., Yaghi,O. M. (2005) Porous, crystalline, covalent organic frameworks. Science, 310,1166–1170. DOI
- Bhunia, S., Deo, K. A., Gaharwar, A. K. (2020) 2D Covalent OrganicFrameworks for Biomedical Applications. Adv. Funct. Mater., 30, 2002046. DOI
- Esrafili, A., Wagner, A., Inamdar, S., Acharya, A. P. (2021) CovalentOrganic Frameworks for Biomedical Applications. Adv. Healthcare Mater., 10,2002090. DOI
- Lohse, M. S., Bein, T. (2018) Covalent Organic Frameworks: Structures,Synthesis, and Applications. Adv. Funct. Mater., 28, 1705553. DOI
- Vardhan, H., Rummer, G., Deng, A., Ma, S. (2023) Large-Scale Synthesisof Covalent Organic Frameworks: Challenges and Opportunities. Membranes(Basel), 13(8), 696. DOI
- Zhao, X., Pachfule, P., Thomas, A. (2021) Covalent organic frameworks(COFs) for electrochemical applications. (Review Article) Chem. Soc. Rev., 50,6871-6913. DOI
- Côté, A. P., El-Kaderi, H. M., Furukawa, H., Hunt, J. R., Yaghi, O. M.(2007) Reticular synthesis of microporous and mesoporous 2D covalent organicframeworks. J. Am. Chem. Soc., 129, 12914–12915. DOI
- Lu, Z., Xu, K., Xiao, K. et al. (2025) Biomolecule sensors based on organicelectrochemical transistors. npj Flex Electron, 9, 9. DOI
- Thomas, S. A., Bekhti-Sari, F., Whelan, J., Alkhalifah, M. A., Khair,M., Traboulsi, H., Pasricha, R., Jagannathan, R., Mokhtari-Soulimane, N.,Gándara, F., Trabolsi, A., Benyettou, F., Kaddour, N., Prakasam, T., Das,G., Sharma, S. K. (2021) In vivo oral insulin delivery via covalent organicframeworks. Chem. Sci., 12(17), 6037-6047. DOI
- Uribe-Romo, F. J., Doonan, C. J., Furukawa, H., Oisaki, K., Yaghi, O. M.(2011) Crystalline covalent organic frameworks with hydrazone linkages. J.Am. Chem. Soc., 133, 11478–11481. DOI
- Das, G., Balaji, Shinde, D., Kandambeth, S., Biswal, B. P., Banerjee, R.(2014) Mechanosynthesis of imine, β-ketoenamine, and hydrogen-bondedimine-linked covalent organic frameworks using liquid-assisted grinding. Chem.Commun., 50(84), 12615–12618. DOI
- Puthiaraj, P., Lee, Y.-R., Zhang, S., Ahn, W.-S. (2016) Triazine-basedcovalent organic polymers: design, synthesis and applications in heterogeneouscatalysis. J. Mater. Chem. A, 4, 16288. DOI
- Ren, S., Bojdys, M. J., Dawson, R., Laybourn, A., Khimyak, Y. Z., Adams,D. J., Cooper, A. I. (2012) Porous, Fluorescent, Covalent Triazine-BasedFrameworks Via Room-Temperature and Microwave-Assisted Synthesis. Adv.Mater., 24(17), 2357– 2361. DOI
- Vitaku, E., Dichtel, W. R. (2017) Synthesis of 2D Imine-Linked CovalentOrganic Frameworks through Formal Transimination Reactions. J. Am. Chem.Soc., 139(37), 12911– 12914. DOI
- Ge, J., Xiao, J., Liu, L., Qiu, L., Jiang, X. (2016) Facile microwave-assistedproduction of Fe3O4 decorated porous melamine-based covalent organicframework for highly selective removal of Hg2+. J. Porous. Mater., 23(3),791–800. DOI
- Li, Z., Wang, W., Ndahiro, C., Zhou, X., Shen, S., Zhang, G. (2025) WS2quantum dots embedded CTF/PVDF membranes for efficient remediation ofdye wastewater with enhanced self-cleaning properties. J. Water Process Eng.,74, 107896. DOI
- Wang, Q. K., Ai, Z. L., Guo, Q. Y., Wang, X. J., Dai, C. H., et al. (2023)Photo-Enhanced Chemo-Transistor Platform for Ultrasensitive Assay of SmallMolecules. J. Am. Chem. Soc., 145, 10035–10044. DOI
- Anderson, N. L., Anderson, N. G. (2002) The human plasma proteome:history, character, and diagnostic prospects. Mol. Cell. Proteomics, 1(11), 845-867. DOI
- Yan, F., Zhang, M., Li, J. (2014) Solution–gated graphene transistorsfor chemical and biological sensors. Adv. Healthc. Mater., 3, 313–331. DOI
- Ju, P., Zhu, Y.-Y., Jiang, T.-T., Gao, G., Wang, S.-L., et al. (2023) DNAintercalation makes possible superior-gain organic photoelectrochemicaltransistor detection. Biosens. Bioelectron., 237, 5543. DOI
- Deng, M., Ren, Z., Zhang, H., Li, Z., Xue, C. et al. (2023) Unamplifiedand realtime label free miRNA21 detection using solution gated graphenetransistors in prostate cancer diagnosis. Adv. Sci., 10, 2205886. DOI
- Ma, X. et al. (2022) OFET and OECT, two types of organic thin-filmtransistor used in glucose and DNA biosensors: a review. IEEE Sens. J., 22,11405–11414. DOI
- Hou, L. et al. (2024) Reticular heterojunction for organicphotoelectrochemical transistor detection of neuron specific enolase. Small, 20,240003. DOI
- Ding, L. et al. (2022) Turning on high-sensitive organic electrochemicaltransistor based photoelectrochemical type sensor over modulation of Fe MOFby PEDOT. Adv. Funct. Mater., 32, 2202735. DOI
- Cai, H. et al. (2024) Molecule engineering metal–organic frameworkbasedorganic photoelectrochemical transistor sensor for ultrasensitive bilirubindetection. Anal. Chem., 96, 12739–12747. DOI
- Li, H., Fan, R., Zou, B, Yan, J., Shi, Q., Guo, G. (2023) Roles ofMXenes in biomedical applications: recent developments and prospects. J.Nanobiotechnology, 21, 73. DOI
- Xu, M., Chen, K., Zhu, L., Zhang, S., Wang, M., He, L., Zhang,Z., Du, M. (2021) MOF@COF Heterostructure Hybrid for Dual-ModePhotoelectrochemical−Electrochemical HIV-1 DNA Sensing. Langmuir., 37,13479–13492. DOI
- Li, Y., Zhang, C., He, Y., Gao, J., Li, W., Cheng, L., Sun, F., Xia, P., Wang,Q. A. (2022) Generic and Non-Enzymatic Electrochemical Biosensor IntegratedMolecular Beacon-like Catalyzed Hairpin Assembly Circuit with MOF@Au@G-Triplex/Hemin Nanozyme for Ultrasensitive Detection of miR-721.Biosens. Bioelectron., 203, 114051. DOI
- Liu, Y., Nie, Y., Wang, M., Zhang, Q., Ma, Q. (2020) Distance-Dependent Plasmon-Enhanced Electrochemiluminescence Biosensor Basedon MoS2 Nanosheets. Biosens. Bioelectron., 148, 111823. DOI
- Zhang, C., Shi, D., Li, X., Yuan, J. (2022) Microfluidic ElectrochemicalMagnetoimmunosensor for Ultrasensitive Detection of Interleukin-6 Basedon Hybrid of AuNPs and Graphene. Talanta, 240, 123173. DOI
- Guo, Y.-Z., Liu, J.-L., Chen, Y.-F., Chai, Y.-Q., Li, Z.-H., Yuan, R.(2022) Boron and Nitrogen-Codoped Carbon Dots as Highly EfficientElectrochemiluminescence Emitters for Ultrasensitive Detection of Hepatitis BVirus DNA. Anal. Chem., 94, 7601–7608. DOI
- Lu, Q., Su, T., Shang, Z., Jin, D., Shu, Y., Xu, Q., Hu, X. (2021) FlexiblePaper-Based Ni-MOF Composite/AuNPs/CNTs Film Electrode for HIVDNA Detection. Biosens. Bioelectron., 184, 113229. DOI
- Huang, S., Liu, Z., Yan, Y., Chen, J., Yang, R., Huang, Q., Jin, M., Shui, L.(2022) Triple signal-enhancing electrochemical aptasensor based on rhomboiddodecahedra carbonized-ZIF67 for ultrasensitive CRP detection. BiosensBioelectron., 207, 114129. DOI
- Xu, B. Z., Zhu, M. S., Zhang, W. C., Zhen, X., Pei, Z. X., Xue, Q., Zhi, C.Y., Shi, P. (2016) Ultrathin MXene-Micropattern-Based Field-Effect Transistorfor Probing Neural Activity. Adv. Mater., 28, 3333–3339. DOI
- Palanisamy, S. et al. (2023) One-step-one-pot hydrothermally derivedmetal-organic-framework-nanohybrids for integrated point-of-care diagnosticsof SARS-CoV-2 viral antigen/pseudovirus utilizing electrochemical biosensorchip. Sens. Actuators B, 390, 133960. DOI
- Dezhakam, E., Vayghan, R. F., Dehghani, S., Kafili-Hajlari, T., Naseri, A.,Dadashpour, M., Khalilzadeh, B., Kanberoglu, G. S. (2024) Highly efficientelectrochemical biosensing platform in breast cancer detection based on MOFCOF@Au core-shell like nanostructure. Sci. Rep., 14, 29850. DOI
- Chen, Z., Wu, C., Yuan, Y., Xie, Z., Li, T., Huang, H., Li, S., Deng, J., Lin,H., Shi, Z., et al. (2023) CRISPR-Cas13a-Powered Electrochemical Biosensorfor the Detection of the L452R Mutation in Clinical Samples of SARS-CoV-2Variants. J. Nanobiotechnol., 21, 141. DOI
- Cai, Q., Wu, D., Li, H., Jie, G., Zhou, H. (2021) VersatilePhotoelectrochemical and Electrochemiluminescence Biosensor Based on 3DCdSe QDs-DNA Nanonetwork-SnO2 Nanoflower Coupled with DNA WalkerAmplification for HIV Detection. Biosens. Bioelectron., 191, 113455. DOI
- Biswas, S., Lan, Q., Xie, Y., Sun, X., Wang, Y. (2021) Label-FreeElectrochemical Immunosensor for Ultrasensitive Detection of CarbohydrateAntigen 125 Based on Antibody-Immobilized Biocompatible MOF-808/CNT.ACS Appl. Mater. Interfaces, 13, 3295–3302. DOI
- Chen, G. et al. (2023) High-efficiency aluminum-metal organicframework/HEPES electrochemiluminescence system for ultrasensitivedetection of HBV DNA. Anal. Chem., 95, 7030–7035. DOI
- An, Y., Dong, S., Chen, H., Guan, L., Huang, T. (2022) Ce-MOF/COF/carbon nanotube hybrid composite: Construction of efficient electrochemicalimmune platform for amplifying detection performance of CA125.Bioelectrochemistry, 147, 108201. DOI
- Sobhanie, E., Salehnia, F., Xu, G., Hamidipanah, Y., Arshian, S.,Firoozbakhtian, A., Hosseini, M., Ganjali, M. R., Hanif, S. (2022) Recent Trendsand Advancements in Electrochemiluminescence Biosensors for Human VirusDetection. Trends Anal. Chem., 157, 116727. DOI
- Zhang, Y.-W., Liu, W.-S., Chen, J.-S., Niu, H.-L., Mao, C.-J., Jin, B.-K.(2020) Metal-organic gel and metal-organic framework based switchableelectrochemiluminescence RNA sensing platform for Zika virus. Sensor.Actuator. B Chem., 321, DOI
- Zhang, H.-J., Zhu, J., Bao, N., Ding, S.-N. (2021) Enhancedelectrochemiluminescence of CdS quantum dots capped with mercaptopropionicacid activated by EDC for Zika virus detection. Analyst, 146(9), 2928–2935. DOI
- Yang, T., Xu, C., Liu, C., Ye, Y., Sun, Z., Wang, B., Luo, Z. (2022)Conductive Polymer Hydrogels Crosslinked by Electrostatic Interaction withPEDOT:PSS Dopant for Bioelectronics Application. Chem. Eng. J., 429,132430. DOI
- Luo, G. (2019) Electrochemical Myoglobin Biosensor Based onMagnesium Metal-Organic Frameworks and Gold Nanoparticles CompositeModified Electrode. Int. J. Electrochem. Sci., 14, 2405–2413. DOI
- Li, S., Hu, C., Chen, C., Zhang, J., Bai, Y., Tan, C. S., Ni, G., He, F., Li,W., Ming, D. (2021) Molybdenum Disulfide Supported on Metal-OrganicFrameworks as an Ultrasensitive Layer for the Electrochemical Detection of theOvarian Cancer Biomarker CA125. ACS Appl. Bio Mater., 4, 5494–5502. DOI
- Xue, Y., Wang, Y., Feng, S., Yan, M., Huang, J., Yang, X. (2022) A Dual-Amplification Mode and Cu-Based Metal-Organic Frameworks MediatedElectrochemical Biosensor for Sensitive Detection of MicroRNA. Biosens.Bioelectron., 202, 113992. DOI
- Lu, J., Hu, Y., Wang, P., Liu, P., Chen, Z., Sun, D. (2020) ElectrochemicalBiosensor Based on Gold Nanoflowers-Encapsulated Magnetic Metal-OrganicFramework Nanozymes for Drug Evaluation with in-Situ Monitoring of H2O2Released from H9C2 Cardiac Cells. Sens. Actuators B, 311, 127909. DOI
- Du, L., Chen, W., Wang, J., Cai, W., Kong, S., Wu, C. (2019) Folic Acid-Functionalized Zirconium Metal-Organic Frameworks Based ElectrochemicalImpedance Biosensor for the Cancer Cell Detection. Sens. Actuators B, 301,127073. DOI
- Chang, J., Wang, X., Wang, J., Li, H., Li, F. (2019) Nucleic Acid-Functionalized Metal-Organic Framework-Based HomogeneousElectrochemical Biosensor for Simultaneous Detection of Multiple TumorBiomarkers. Anal. Chem., 91, 3604–3610. DOI
- Wang, L., Meng, T., Liang, L., Sun, J., Wu, S., Wang, H., Yang, X., Zhang,Y. (2019) Fabrication of Amine-Functionalized Metal-Organic Frameworkswith Embedded Palladium Nanoparticles for Highly Sensitive ElectrochemicalDetection of Telomerase Activity. Sens. Actuators B, 278, 133–139. DOI
- Huang, S., Lu, M., Wang, L. (2020) Cytochrome C-MultiwalledCarbon Nanotube and Cobalt Metal Organic Framework/Gold NanoparticleImmobilized Electrochemical Biosensor for Nitrite Detection. RSC Adv., 11,501–509. DOI
- Gupta, A., Bhardwaj, S. K., Sharma, A. L., Kim, K. H., Deep A. (2019)Development of an Advanced Electrochemical Biosensing Platform for E. coliUsing Hybrid Metal-Organic Framework/Polyaniline Composite. Environ. Res.,171, 395–402. DOI
- Yildirim, O., Derkus, B. (2020) Triazine-Based, 2D Covalent OrganicFrameworks Improve the Electrochemical Performance of EnzymaticBiosensors. J. Mater. Sci., 55, 3034–3044. DOI
- Xiao, Y., Wu, N., Wang, L., Chen, L. (2022) A Novel Paper-BasedElectrochemical Biosensor Based on N, O-Rich Covalent Organic Frameworksfor Carbaryl Detection. Biosensors, 12, 899. DOI
- Sun, X., Xie, Y., Chu, H., Long, M., Zhang, M., Wang, Y., Hu, X. (2022) AHighly Sensitive Electrochemical Biosensor for the Detection of HydroquinoneBased on a Magnetic Covalent Organic Framework and Enzyme for SignalAmplification. New J. Chem., 46, 11902–11909. DOI
- Li, H., Kou, B., Yuan, Y., Chai, Y., Yuan, R. (2022) Porous Fe3O4@COF-Immobilized Gold Nanoparticles with Excellent Catalytic Performancefor Sensitive Electrochemical Detection of ATP. Biosens. Bioelectron., 197,113758. DOI
- Han, Y., Lu, J., Wang, M., Sun, C., Yang, J., Li, G. (2022) AnElectrochemical Biosensor for Exosome Detection Based on Covalent OrganicFrameworks Conjugated with DNA and Horseradish Peroxidase. J. Electroanal.Chem., 920, 116576. DOI
- Liang, W., Carraro, F., Solomon, M. B., Bell, S. G., Amenitsch, H., et al.(2019) Enzyme encapsulation in a porous hydrogen-bonded organic framework.J. Am. Chem. Soc., 141, 36. DOI
- Li, P., He, Y., Guang, J., Weng, L., Zhao, J. C. G., et al. (2014) Ahomochiral microporous hydrogen-bonded organic framework for highlyenantioselective separation of secondary alcohols. J. Am. Chem. Soc., 136, 547. DOI
- Li, P., He, Y., Zhao, Y., Weng, L., Wang, H., et al. (2015) A rod-packingmicroporous hydrogen-bonded organic framework for highly selectiveseparation of C2H2/CO2 at room temperature. Angew. Chem. Int. Ed., 54, 574. DOI
- Wang, H., Li, B., Wu, H., Hu, T. L., Yao, Z. et al. (2015) A flexiblemicroporous hydrogen-bonded organic framework for gas sorption andseparation. J. Am. Chem. Soc., 137, 9963. DOI
- Yang, W., Yang, F., Hu, T. L., King, S. C., Wang, H. et al. (2016)Microporous diaminotriazine-decorated porphyrin-based hydrogen-bondedorganic framework: permanent porosity and proton conduction. Cryst. GrowthDes., 16, 5831. DOI
- Yuan, S., Zou, L., Qin, J. S., Li, J., Huang, L. et al. (2017) Constructionof hierarchically porous metal–organic frameworks through linker labilization.Nat. Commun., 8, 15356. DOI
- Wang, H., Bao, Z., Wu, H., Lin, R. B., Zhou, W. et al. (2017) Two solventinducedporous hydrogen-bonded organic frameworks: solvent effects onstructures and functionalities. Chem. Commun., 53, 11150. DOI
- Liu, B. T., Pan, X. H., Nie, D.Y., Hu, X. J., Liu, E. P., et al. (2020) Ionichydrogen-bonded organic frameworks for ion-responsive antimicrobialmembranes. Adv. Mater., 32, 48. DOI
- Wied, P., Carraro, F., Bolivar, J. M., Doonan, C. J., Falcaro, P., et al.(2022) Combining a genetically engineered oxidase with hydrogen-bondedorganic frameworks (HOFs) for highly efficient biocomposites. Angew. Chem.Int. Ed., 61, 16. doi: 10.1002/anie.202117345
- Yin, Q., Zhao, P., Sa, R. J., Chen, G. C., Lü, J. Liu, T. F., Cao, R. (2018) Anultra-robust and crystalline redeemable hydrogen-bonded organic frameworkfor synergistic chemo-photodynamic therapy. Angew. Chem. Int. Ed., 57,7691–7696. DOI
- Li, J., Chen, B. (2024) Flexible hydrogen-bonded organic frameworks(HOFs): opportunities and challenges. Chem. Sci., 15(26), 9874-9892. DOI
- Mohan, B., Singh, G., Gupta, R. K., Sharma P. K., Solovev A. A., PombeiroA. J. L., Ren P. (20245) Hydrogen-bonded organic frameworks (HOFs):Multifunctional material on analytical monitoring. TrAC Trends. Anal. Chem.,170, 117436. DOI
- Jiang, R., Luo, G., Chen, G., Lin, Y., Tong, L., Huang, A., Zheng, Y., Shen,Y., Huang, S., Ouyang G. (2024) Boosting the photocatalytic decontaminationefficiency using a supramolecular photoenzyme ensemble. Sci. Adv., 10(37),eadp1796. DOI
- Vijayakanth, T., Dasgupta, S., Ganatra, P., Rencus-Lazar, S., Desai, A. V.,Nandi, S., Jain, R., Bera, S., Nguyen, A. I., Gazit, E., Misra, R. (2024) Peptidehydrogen-bonded organic frameworks. Chem. Soc. Rev., 53(8), 3640-3655. DOI
- Chafiq, M., Chaouiki, A., Ko, Y. G. (2023) Recent Advances inMultifunctional Reticular Framework Nanoparticles: A Paradigm Shift inMaterials Science Road to a Structured Future. Nanomicro Lett., 15(1), 213. DOI
- Zhang, H.-Y., Yang, Y., Li, C.-C., Tang, H.-L., Zhang, F.-M., Zhang,G.-L., Yan, H. (2021) A new strategy for constructing covalently connectedMOF@ COF core–shell heterostructures for enhanced photocatalytic hydrogenevolution. J. Mater. Chem. A, 9, 16743. DOI
- Peng, Y., Zhao, M., Chen, B., Zhang, Z., Huang, Y., et al. (2018)Hybridization of MOFs and COFs: a new strategy for construction of MOF@COF core–shell hybrid materials. Adv. Mater., 30, 1705454. DOI
- Altintas, C., Erucar, I., Keskin, S. (2022) MOF/COF hybrids as nextgeneration materials for energy and biomedical applications. CrystEngComm,24(42), 7360-7371. DOI
- Cui, B., Fu, G. (2022) Process of metal-organic framework (MOF)/covalent-organic framework (COF) hybrids-based derivatives and theirapplications on energy transfer and storage. Nanoscale, 14(5), 1679-1699. DOI
- Liang, H., Wang, L., Yang, Y., Song, Y., Wang, L. (2021) A novelbiosensor based on multienzyme microcapsules constructed from covalentorganicframework. Biosens. Bioelectron., 193, 113553. DOI
- Hota, M. K. et al. (2022) Electrochemical thin-film transistors usingcovalent organic framework channel. Adv. Funct. Mater., 32, 2201120. DOI
- Daniel M., Mathew G., Anpo M., Neppolian B. (2022) MOF basedelectrochemical sensors for the detection of physiologically relevantbiomolecules: an overview. Coord. Chem. Rev., 468, 214627. DOI
- Wang, Z., Shi, X., Chen, F., Fan, G., Zhao, W. (2024) Ag/AgCl likephotogating of a COF on MOF heterojunction in organic photoelectrochemicaltransistor. Adv. Funct. Mater., 34, 2404497. DOI
- Lu, Z., Xu, K., Xiao, K. et al. (2025) Biomolecule sensors based on organicelectrochemical transistors. npj Flex Electron, 9, 9. DOI.org/10.1038/s41528-025-00383-x
- Sakata T. (2024) Signal transduction interfaces for field-effect transistorbasedbiosensors. Commun. Chem., 7, 35. DOI
- Deng, M., Li, J., Xiao, B., Ren, Z., Li, Z., Yu, H., Li, J., Wang, J., Chen, Z.,Wang, X. (2022) Ultrasensitive Label-Free DNA Detection Based on Solution-Gated Graphene Transistors Functionalized with Carbon Quantum Dots. Anal.Chem., 94, 3320. DOI
- Xu, M., Chen, K., Zhu, L., Zhang, S., Wang, M., He, L., Zhang,Z., Du, M. (2021) MOF@COF Heterostructure Hybrid for Dual-ModePhotoelectrochemical-Electrochemical HIV-1 DNA Sensing. Langmuir, 37,13479-13492. DOI
- Gao G. (2022) Hybridization chain reaction for regulating surfacecapacitance of organic photoelectrochemical transistor toward sensitive miRNAdetection. Biosens. Bioelectron., 209, 114224. DOI
- Dezhakam, E., Vayghan, R. F., Dehghani, S. et al. (2024) Highly efficientelectrochemical biosensing platform in breast cancer detection based on MOFCOF@Au core-shell like nanostructure. Sci. Rep., 14, 29850. DOI
- Fu, J., Das, S., Xing, G., Ben, T., Valtchev, V., Qiu, S. (2016) Fabricationof COF-MOF Composite Membranes and Their Highly Selective Separation ofH2/CO2. J. Am. Chem. Soc., 138, 7673-7680. DOI
- Zhou, N., Ma, Y., Hu, B., He, L., Wang, S., Zhang, Z., Lu, S. (2019)Construction of Ce-MOF@COF hybrid nanostructure: Label-free aptasensorfor the ultrasensitive detection of oxytetracycline residues in aqueoussolution environments. Biosens. Bioelectron., 127, 92-100. DOI
- Nakatani, R., Irie, T., Das, S., Fang, Q., Negish, Y. (2025) Converging theComplementary Traits of Metal–Organic Frameworks and Covalent OrganicFrameworks. ACS Appl. Mater. Interfaces, 17(17), 24701-24729. DOI
- Mondal, T., Haldar, D., Ghosh, A., Ghorai, U. K., Saha, S. K. (2020) AMOF functionalized with CdTe quantum dots as an efficient white light emittingphosphor material for applications in displays. New J. Chem., 44, 55–63. DOI
- Yang, Q., Wang, Q., Long, Y., Wang, F., Wu, L., Pan, J., et al. (2020) Insitu formation of Co9S8 quantum dots in MOF-derived ternary metal layereddouble hydroxide nanoarrays for high-performance hybrid supercapacitors. Adv.Energy. Mater., 10, 1903193. DOI
- Gui, B., Meng, Y., Xie, Y., Tian, J., Yu, G., Zeng, W., Zhang, G., Gong,S., Yang, C., Zhang, D., Wang, C. (2018) Tuning the Photoinduced ElectronTransfer in a Zr-MOF: Toward Solid-State Fluorescent Molecular Switch andTurn-On Sensor. Adv. Mater., 30(34), 1802329. DOI
- Huang, Z., Chen, H., Zhao, L., He, X., Fang, W., Du, Y., et al. (2018) CdSeQDs sensitized MIL-125/TiO2@SiO2 biogenic hierarchical composites withenhanced photocatalytic properties via two-level heterostructure. J. Mater. Sci.Mater. Electron., 29, 1245-12054. DOI
- Jin, M., Mou, Z. L., Zhang, R.-L., Liang, S. S., Zhang, Z. Q. (2017) Anefficient ratiometric fluorescence sensor based on metal-organic frameworksand quantum dots for highly selective detection of 6-mercaptopurine. Biosens.Bioelectron., 91, 162–168. DOI
- Li, Z., Bu, F., Wei, J., Yao, W., Wang, L., Chen, Z., et al. (2018) Boostingthe energy storage densities of supercapacitors by incorporating N-dopedgraphene quantum dots into cubic porous carbon. Nanoscale, 10, 22871–22883. DOI
- Li, Z., Liu, X., Wang, L., Bu, F., Wei, J., Pan, D., et al. (2018) Hierarchical3D all-carbon composite structure modified with N-doped graphene quantumdots for high-performance flexible supercapacitors. Small, 14, 1801498. DOI
- Sun Y., Zheng L., Yang Y. et al. (2020) Metal–Organic FrameworkNanocarriers for Drug Delivery in Biomedical Applications. Nano-Micro Lett.,12, 103. DOI
- Giri, L., Rout, S. R., Varma, R. S., Otyepka, M., Jayaramulu, K., Dandela,R. (2022) Recent advancements in metal–organic frameworks integratingquantum dots (QDs@MOF) and their potential applications. ScienceOpen, Inc.Nanotechnol. Rev., 11(1), 1947-1976. DOI
- Li, K., Ji, Q., Liang, H., Hua, Z., Hang, X., Zeng, L., Han, H.(2023) Biomedical application of 2D nanomaterials in neuroscience. J.Nanobiotechnology, 21, 181. DOI
- Wang, M., Nian, L., Cheng, Y., Yuan, B., Cheng, S., Cao, C. (2021)Encapsulation of Colloidal Semiconductor Quantum Dots into Metal-OrganicFrameworks for Enhanced Antibacterial Activity through Interfacial ElectronTransfer. Chem. Eng. J., 426 (5), 130832. DOI
- Li R., Qu X.-L., Zhang Y.-H., Han H.-L., Li X. (2016) Lanthanide–organicframeworks constructed from naphthalenedisulfonates: structure, luminescenceand luminescence sensing properties. CrystEngComm, 18, 5890. DOI
- Dong, J., Zhao, D., Lu, Y., Sun, W.-Y. (2019) Photoluminescent metal–organic frameworks and their application for sensing biomolecules. J. Mater.Chem. A, 7, 22744-22767. DOI
- Picchi, D. F., Biglione, C., Horcajada, P. (2023) Nanocomposites Basedon Magnetic Nanoparticles and Metal-Organic Frameworks for Therapy,Diagnosis, and Theragnostics. ACS Nanosci. Au., 4(2), 85-114. DOI
- Abdelhamid, H. N. (2021) Zeolitic Imidazolate Frameworks (ZIF-8) forBiomedical Applications: A Review. Curr. Med. Chem., 28(34), 7023-7075. DOI
- Hoseinpour, V., Shariatinia, Z. (2021) Applications of zeolitic imidazolateframework-8 (ZIF-8) in bone tissue engineering: A review. Tissue Cell, 72,101588. DOI
- Gatou, M. A., Vagena, I. A., Lagopati, N., Pippa, N., Gazouli, M.,Pavlatou, E. A. (2023) Functional MOF-Based Materials for Environmental andBiomedical Applications: A Critical Review. Nanomaterials (Basel), 13(15),2224. DOI
- Narea, P., Brito, I., Quintero, Y., Camú, E. (2023) Novel HydrophobicFunctionalized UiO-66 Series: Synthesis, Characterization, and Evaluation ofTheir Structural and Physical-Chemical Properties. Int. J. Mol. Sci., 25(1), 199. DOI
- Yang, P., Liu, Q., Liu, J., Zhang, H., Li, Z., Li, R., et al. (2017) Interfacialgrowth of a metal-organic framework (UiO-66) on functionalized grapheneoxide (GO) as a suitable seawater adsorbent for extraction of uranium(vi). J.Mater. Chem. A, 5, 17933–17942. DOI
- Yang, C., Shang, S., Gu, Q., Shang, J., Li, X. (2022) Metal-organicframework-derived carbon nanotubes with multi-active Fe-N/Fe sites as abifunctional electrocatalyst for zinc-air battery. J. Energy. Chem., 66, 306–313. DOI
- Wu, L. Y., Mu, Y. F., Guo, X. X., et al. (2019) Encapsulating PerovskiteQuantum Dots in Iron-Based Metal–Organic Frameworks (MOFs) for EfficientPhotocatalytic CO2 Reduction. Angew. Chem. Int. Ed., 58, 9491-9495. DOI
- Zhang, D., Zhao, J., Liu, Q., Xia, Z. (2019) Synthesis and luminescenceproperties of CsPbX3@Uio-67 composites toward stable photoluminescenceconvertors. Inorg. Chem., 58, 1690–1696. DOI
- Meng, X., Zhang, C., Zhuang, J., Zheng, G., Zhou, L. (2019) Metal-organicframework as nanoreactors to co-incorporate carbon nanodots and CdS quantumdots into the pores for improved H2 evolution without noble-metal cocatalyst.Appl. Catal. B. Environ., 244, 340–346. DOI
- Ren, J., Li, T., Zhou, X., Dong, X., Shorokhov, A. V., Semenov, M. B.,et al. (2019) Encapsulating all-inorganic perovskite quantum dots intomesoporous metal organic frameworks with significantly enhanced stabilityfor optoelectronic applications. Chem. Eng. J., 358, 30–39. DOI
- Mo, G., Qin, D., Jiang, X., Zheng, X., Mo, W., Deng, B. (2020) A sensitiveelectrochemiluminescence biosensor based on metal-organic frameworkand imprinted polymer for squamous cell carcinoma antigen detection. SensActuators B Chem., 310, 127852. DOI
- Wang, K., Li, N., Zhang, J., Zhang, Z. (2017) Size-selective QD@MOFcore-shell nanocomposites for the highly sensitive monitoring of oxidaseactivities. Biosens. Bioelectron., 87, 339–344. DOI
- Wang, H., Yuan, X., Wu, Y., Chen, X., Leng, L., Zeng, G. (2015)Photodeposition of metal sulfides on titanium metal-organic frameworks forexcellent visible-light-driven photocatalytic Cr(vi) reduction. RSC Adv., 5,32531–32535. DOI. org/10.1039/C5RA01283J
- Lin, R., Shen, L., Ren, Z., Wu, W., Tan, Y., Fu, H., Zhang, J., Wu, L. (2014)Enhanced photocatalytic hydrogen production activity via dual modification ofMOF and reduced graphene oxide on CdS. Chem Commun (Camb), 50(62),8533-8535. DOI
- Murugesan, A., Li, H., Shoaib, M. (2025) Recent Advances inFunctionalized Carbon Quantum Dots Integrated with Metal-OrganicFrameworks: Emerging Platforms for Sensing and Food Safety Applications.Foods, 14(12), 2060. DOI
- Rabiee, N., Bagherzadeh, M., Jouyandeh, M., Zarrintaj, P., Saeb, M.R., Mozafari, M., Shokouhimehr, M., Varma, R. S. (2021) Natural PolymersDecorated MOF-MXene Nanocarriers for Co-delivery of Doxorubicin/pCRISPR. ACS Appl. Bio. Mater., 4(6), 5106-5121. DOI
- Chang, Y., Lou, J., Yang, L., Liu, M., Xia, N, Liu, L. (2022) Design andApplication of Electrochemical Sensors with Metal–Organic Frameworks as theElectrode Materials or Signal Tags. Nanomaterials. (Basel), 12(18), 3248. DOI
- Alsaiari, S. K., Qutub, S. S., Sun, S., Baslyman, W., Aldehaiman, M.,Alyami, M., Almalik, A., Halwani, R., Merzaban, J., Mao, Z., Khashab, N. M.(2021) Sustained and targeted delivery of checkpoint inhibitors by metalorganicframeworks for cancer immunotherapy. Sci. Adv., 7(4), eabe7174. DOI
- Kamal, N. A., Abdulmalek, E., Fakurazi, S., Cordova, K. E., AbdulRahman, M. B. (2022) Dissolution and Biological Assessment of Cancer-Targeting Nano-ZIF-8 in Zebrafish Embryos. ACS Biomater. Sci. Eng., 8(6),2445-2454. DOI
- Gu, C., Guo, C., Li, Z., Wang, M., Zhou, N., He, L., et al. (2019) BimetallicZrHf-based metal-organic framework embedded with carbon dots: ultrasensitiveplatform for early diagnosis of HER2 and HER2-overexpressed livingcancer cells. Biosens. Bioelectron., 134, 8–15. DOI
- Freitas, M., Nouws, H. P., Keating, E., Delerue-Matos, C. (2020) Highperformanceelectrochemical immunomagnetic assay for breast cancer analysis.Sens. Actuators B. Chem., 308, 127667. DOI
- Ehzari, H., Samimi, M., Safari, M., Gholivand, M. B. (2020) Label-freeelectrochemical immunosensor for sensitive HER2 biomarker detection usingthe core-shell magnetic metal-organic frameworks. J. Electroanalytical. Chem.,877, 114722. DOI
- Xie, H., Liu, X., Huang, Z., Xu, L., Bai, R., He, F., Wang, M., Han, L., Bao,Z., Wu, Y., Xie, C., Gong, Y. (2022) Nanoscale Zeolitic Imidazolate Framework(ZIF)-8 in Cancer Theranostics: Current Challenges and Prospects. Cancers(Basel), 14(16), 3935. DOI
- Smith, B. R., Cheng, Z., De, A., Rosenberg J., Gambhir S. S. (2010)Dynamic visualization of RGD-quantum dot binding to tumor neovasculatureand extravasation in multiple living mouse models using intravital microscopy.Small, 6(20), 2222-2229. doi: 10.1002/smll.201001022
- Kamal, N., Abdulmalek, E., Fakurazi, S., Cordova, K. E., AbdulRahman, M. B. (2021) Surface peptide functionalization of zeoliticimidazolate framework-8 for autonomous homing and enhanced delivery ofchemotherapeutic agent to lung tumor cells. Dalton Trans., 50(7), 2375-2386. DOI
- Sameni, M., Moradbeigi, P., Hosseini, S., Ghaderian, S. M. H., Jajarmi,V., Miladipour, A. H., Basati, H., Abbasi, M., Salehi, M. (2024) ZIF-8Nanoparticle: A Valuable Tool for Improving Gene Delivery in Sperm-MediatedGene Transfer. Biol. Proced. Online, 26(1), 4. DOI
- Barkalina, N., Charalambous, C., Jones, C., Coward, K. (2014)Nanotechnology in reproductive medicine: emerging applications ofnanomaterials. Nanomed. Nanotechnol. Biol. Med., 10(5), e921–938. DOI
- Acharya, B., Behera, A., Behera, S., Moharana, S. (2024) Recent Advancesin Nanotechnology-Based Drug Delivery Systems for the Diagnosis andTreatment of Reproductive Disorders. ACS Applied Bio Materials, 7(3), 1336-1361. DOI
- Gu, C., Guo, C., Li, Z., Wang, M., Zhou, N., He, L., et al. (2019) BimetallicZrHf-based metal-organic framework embedded with carbon dots: ultrasensitiveplatform for early diagnosis of HER2 and HER2-overexpressed livingcancer cells. Biosens. Bioelectron., 134, 8–15. DOI
- Ehzari H., Amiri M., Safari M. (2020) Enzyme-free sandwich-typeelectrochemical immunosensor for highly sensitive prostate specific antigenbased on conjugation of quantum dots and antibody on surface of modifiedglassy carbon electrode with core–shell magnetic metal-organic frameworks.Talanta, 210, 120641. DOI
- Zhang, Q., Tian, Y., Liang, Z., Wang, Z., Xu, S., Ma, Q. (2021)DNA-mediated Au–Au dimerbased surface plasmon couplingelectrochemiluminescence sensor for BRCA1 gene detection. Anal. Chem.,93(6), 3308–3314.
- Ehzari, H., Safari, M., Samimi, M. (2021) Signal Amplification of NovelSandwich-Type Genosensor via Catalytic Redox-Recycling on PlatformMWCNTs/Fe3O4@TMU-21 for BRCA1 Gene Detection. Talanta, 234, 122698. DOI
- Freitas, M., Nouws, H. P., Keating, E., Delerue-Matos, C. (2020) Highperformanceelectrochemical immunomagnetic assay for breast cancer analysis.Sens. Actuators B. Chem., 308, 127667. DOI
- Li, Z., Peng, Y., Xia, X. et al. (2019) Sr/PTA Metal Organic Framework asA Drug Delivery System for Osteoarthritis Treatment. Sci. Rep., 9, 17570. DOI
- Dou, M., Sanjay, S. T., Dominguez, D. C., Liu, P., Xu, F., Li, X. (2017)Multiplexed instrument-free meningitis diagnosis on a polymer/paper hybridmicrofluidic biochip. J. Biosens. Bioelectron., 87, 865–873. DOI
- Pan, Y., Zhan, S., Xia, F. (2018) Zeolitic imidazolate framework-basedbiosensor for detection of HIV-1 DNA. Anal. Biochem, 546, 5-9. DOI
- Qin, L., Lin, L.-X., Fang, Z.-P., Yang, S.-P., Qiu, G.-H., Chen, J.-X.,Chen, W.-H. (2016) A water-stable metal–organic framework of a zwitterioniccarboxylate with dysprosium: a sensing platform for Ebolavirus RNAsequences. Chem. Commun., 52(1), 132-135. DOI
- Yang, S. P., Chen, S. R., Liu, S. W., Tang, X. Y., Qin, L., Qiu, G. H., Chen,J. X., Chen, W. H. (2015) Platforms formed from a three-dimensional Cubasedzwitterionic metal-organic framework and probe ss-DNA: selectivefluorescent biosensors for human immunodeficiency virus 1 ds-DNA and sudanvirus RNA sequences. Anal Chem., 87(24), 12206–12214. DOI
- Xie, B. P., Qiu, G. H., Hu, P. P., Liang, Z., Liang, Y. M., Sun, B., Bai, L.P., Jiang, Z. H., Chen, J. X. (2018) Simultaneous detection of Dengue andZika virus RNA sequences with a three-dimensional Cu-based zwitterionicmetal–organic framework, comparison of single and synchronous fluorescenceanalysis. Sensors Actuators, B Chem., 254, 1133–1140.
- Xie, B. P., Qiu, G. H., Sun, B., Yang, Z. F., Zhang, W. H., Chen, J. X., Jiang,Z. H. (2019) Synchronous sensing of three conserved sequences of Zika virususing a DNAs@MOF hybrid: Experimental and molecular simulation studies.Inorg. Chem. Front., 6(1), 148–152. DOI
- Luo, L., Zhang, F., Chen, C., Cai, C. (2020) Molecular imprintingresonance light scattering nanoprobes based on pH-responsive metal-organicframework for determination of hepatitis A virus. Microchim. Acta, 187, 1–8. DOI
- Zhang, H. T., Zhang, J. W., Huang, G., Du, Z. Y., Jiang, H. L. (2014) Anamine-functionalized metal-organic framework as a sensing platform for DNAdetection. Chem. Commun., 50(81), 12069–12072. DOI
- Yang, J., Feng, W, Liang, K, Chen, C, Cai, C. (2020) A novel fluorescencemolecularly imprinted sensor for Japanese encephalitis virus detection based onmetal organic frameworks and passivation-enhanced selectivity. Talanta, 212,120744. DOI
- Quijia, C. R., Alves, R. C., Hanck-Silva, G., Frem, R. C. G., Arroyos,G., Chorilli, M. (2022) Metal-organic frameworks for diagnosis andtherapy of infectious diseases. Crit. Rev. Microbiol, 48(2), 161-196. DOI
- Cai, M., Ni, B., Hu, X., Wang, K. et al. (2022) An Investigation ofIRMOF-16 as a pH-responsive Drug Delivery Carrier of Curcumin. J. Sci. Adv.Mater. Devices, 7(4), 100507. DOI
- Chen, G., Luo, J., Cai, M., Qin, L., Wang, Y., Gao, L., Huang, P., Yu, Y.,Ding, Y., Dong, X., et al. (2019) Investigation of Metal-Organic Framework-5(MOF-5) as an Antitumor Drug Oridonin Sustained Release Carrier. Molecules,24, 3369. DOI
- Trushina, D. B., Sapach, A. Y., Burachevskaia, O. A., Medvedev, P. V.,Khmelenin, D. N., Borodina, T. N., Soldatov, M. A., Butova, V. V. (2022)Doxorubicin-Loaded Core-Shell UiO-66@SiO2 Metal-Organic Frameworks forTargeted Cellular Uptake and Cancer Treatment. Pharmaceutics, 14, 1325. DOI
- Safinejad, M., Rigi, A., Zeraati, M., Heidary, Z., Jahani, S., Chauhan, N.P. S., Sargazi, G. (2022) Lanthanum-based metal organic framework (La-MOF)use of 3,4-dihydroxycinnamic acid as drug delivery system linkers in humanbreast cancer therapy. BMC Chem., 16, 93. DOI
- Liu, Y., Zhang, H., Chen, T., Xu, C., Bao, X. (2024) Metal-organicframeworks (MOFs) and their derivatives as emerging biomaterials for thetreatment of osteoarthritis. Front. Pharmacol., 15, 1462368. DOI
- Gatou, M. A., Vagena, I. A., Lagopati, N., Pippa, N., Gazouli, M.,Pavlatou, E. A. (2023) Functional MOF-Based Materials for Environmental andBiomedical Applications: A Critical Review. Nanomaterials (Basel), 13(15),2224. DOI
- Al Sharabati, M., Sabouni, R., Husseini, G. A. (2022) BiomedicalApplications of Metal−Organic Frameworks for Disease Diagnosis andDrug Delivery: A Review. Nanomaterials (Basel), 12(2), 277. DOI
- Sadiq, S., Khan, S., Khan, I., Khan, A., Humayun, M., Wu, P., Usman, M.,Khan, A., Alanazi, A. F., Bououdina, M. (2024) A critical review on metalorganicframeworks (MOFs) based nanomaterials for biomedical applications:Designing, recent trends, challenges, and prospects. Heliyon, 10(3), e25521. DOI
- Gatou, M. A., Vagena, I. A., Lagopati, N., Pippa, N., Gazouli, M.,Pavlatou, E. A. (2023) Functional MOF-Based Materials for Environmental andBiomedical Applications: A Critical Review. Nanomaterials (Basel), 13(15),2224. DOI
- Lu, K., Aung, T., Guo, N., Weichselbaum, R., Lin, W. (2018) NanoscaleMetal-Organic Frameworks for Therapeutic, Imaging, and SensingApplications. Adv. Mater., 30(37), e1707634. DOI
- Suresh, K., Matzger, A. J. (2019) Enhanced Drug Delivery by Dissolutionof Amorphous Drug Encapsulated in a Water Unstable Metal–OrganicFramework (MOF) Angew. Chem. Int. Ed., 131, 16946–16950. DOI
- Zhong, Y., Liu, W., Rao, C., Li, B., Wang, X., Liu, D., Pan, Y., Liu, J. (2021)Recent advances in Fe-mof compositions for biomedical applications. Curr.Med. Chem., 28(30), 6179–6198. DOI
- Luo, Z., Fan, S., Gu, C., Liu, W., Chen, J., Li, B., Liu, J. (2019) Metal–organic framework (MOF)-based nanomaterials for biomedical applications.Curr. Med. Chem., 26(18), 3341–3369. DOI
- Abdelhamid, H. N. (2019) Surfactant assisted synthesis of hierarchicalporous metal-organic frameworks nanosheets. Nanotechnology, 30(43), 435601. DOI
- Lawson, H. D., Walton, S. P., Chan, C. (2021) Metal–organic frameworksfor drug delivery: a design perspective. ACS Appl. Mater. Interfaces, 13(6),7004–7020. DOI
- Abánades Lázaro, I., Wells, C. J., Forgan, R. S. (2020) Multivariatemodulation of the zr MOF UiO-66 for defect‐controlled combinationanticancer drug delivery. Angew. Chem., 132(13), 5249–5255. DOI
- Osterrieth, J. W., Fairen-Jimenez, D. (2021) Metal–organic frameworkcomposites for theragnostics and drug delivery applications. Biotechnol J.,16(2), 2000005. DOI
- Gu, Z.-Y., Yang, C.-X., Chang, N., Yan, X.-P. (2012) Metal–organic frameworks for analytical chemistry: from sample collection tochromatographic separation. Acc. Chem. Res, 45(5), 734–745. DOI
- Gu, Z.-Y., Wang, G., Yan, X.-P. (2010) MOF-5 metal – organic frameworkas sorbent for in-field sampling and preconcentration in combination withthermal desorption GC/MS for determination of atmospheric formaldehyde.Anal Chem., 82(4), 1365–1370. DOI
- Wang, Z., Fu, Y., Kang, Z., Liu, X., Chen, N., Wang, Q., Tu, Y., Wang,L., Song, S., Ling, D. (2017) Organelle-specific triggered release ofimmunostimulatory oligonucleotides from intrinsically coordinated DNA–metal–organic frameworks with soluble exoskeleton. J. Am. Chem. Soc,139(44), 15784–15791. DOI
- Riccò R., Liang W., Li S., Gassensmith J. J., Caruso F., Doonan C.,Falcaro P. (2018) Metal–organic frameworks for cell and virus biology: aperspective. ACS Nano, 12(1), 13–23. DOI
- Li, R., Qu, X., Zhang, Y., Han, H., Li, X. (2016) Lanthanide–organicframeworks constructed from naphthalenedisulfonates: structure, luminescenceand luminescence sensing properties. CrystEngComm, 18, 5890. DOI
- Wu, M. X., Yang, Y. W. (2017) Metal–organic framework (MOF)-baseddrug/cargo delivery and cancer therapy. Adv. Mater., 29(23), 1606134. DOI
- Ren, H., Zhang, L., An, J., Wang, T., Li, L., Si, X., He, L., Wu, X., Wang, C.,Su, Z. (2014) Polyacrylic acid@ zeolitic imidazolate framework-8 nanoparticleswith ultrahigh drug loading capability for pH-sensitive drug release. Chem.Commun., 50(8), 1000–1002. DOI
- Bian, R., Wang, T., Zhang, L., Li, L., Wang, C. (2015) A combination of trimodalcancer imaging and in vivo drug delivery by metal–organic frameworkbased composite nanoparticles. Biomaterial. Sci., 3(9), 1270–1278. DOI
- Zhuang, J., Kuo, C.-H., Chou, L.-Y., Liu, D.-Y., Weerapana, E., Tsung,C.-K. (2014) Optimized Metal–Organic-Framework Nanospheres for DrugDelivery: Evaluation of Small-Molecule Encapsulation. ACS Nano, 8, 3,2812–2819. DOI
- Zhang, H., Chen, W., Gong, K., Chen, J. (2017) Nanoscale zeoliticimidazolate framework-8 as efficient vehicles for enhanced delivery of CpGoligodeoxynucleotides. ACS Appl. Mater. Interfaces, 9(37), 31519–31525. DOI
- Jiang, W., Zhang, H., Wu, J., Zhai, G., Li, Z., Luan, Y., Garg, S. (2018)CuS@MOF-Based Well-Designed Quercetin Delivery System for Chemo-Photothermal Therapy. ACS Appl. Mater. Interfaces, 10, 34513. DOI
- Lyu, F., Zhang, Y., Zare, R. N., Ge, J., Liu, Z. (2014) One-Pot Synthesisof Protein-Embedded Metal–Organic Frameworks with Enhanced BiologicalActivities. Nano Letters, 14(10), 5761–5765. DOI
- Abdelhamid, H. N. (2021) Zeolitic Imidazolate Frameworks (ZIF-8) forBiomedical Applications: A Review. Curr. Med. Chem., 28(34), 7023-7075. DOI
- Pan, Y. B., Wang, S., He, X., Tang, W., Wang, J., Shao, A., Zhang, J. (2019)A combination of glioma in vivo imaging and in vivo drug delivery by metalorganicframework based composite nanoparticles. J. Mater. Chem. B, 7(48),7683-7689. DOI
- Zhuang, D., Zhang, H., Genwen, Hu, G., Guo, B. (2022) Recentdevelopment of contrast agents for magnetic resonance and multimodal imagingof glioblastoma. J. Nanobiotechnology, 20(1), 284. DOI
- de Kraker, M. E. A., Stewardson, A. J., Harbarth, S. (2016) Will 10 MillionPeople Die a Year due to Antimicrobial Resistance by 2050? PLoS Med.,13(11), e1002184. DOI
- Anim, A., Mahmoud, L. A. M., Kelly, A. L., Katsikogianni, M. G., Nayak,S. (2023) Biodegradable Polymer Composites of Metal Organic Framework-5(MOF-5) for the Efficient and Sustained Delivery of Cephalexin andMetronidazole. Appl. Sci., 13(19), 10611. DOI
- Baptista, P. V., McCusker, M. P., Carvalho, A., Ferreira, D. A., Mohan, N.M., Martins, M., Fernandes, A. R. (2018) Nano-Strategies to Fight MultidrugResistant Bacteria-“A Battle of the Titans”. Front. Microbiol., 9, 1441. DOI
- Zhang, S., Ye, J., Liu, X., Wang, Y., Li, C., Fang, J., Chang, B., Qi, Y., Li, Y.,Ning, G. (2021) Titanium carbide/zeolite imidazole framework-8/polylactic acidelectrospun membrane for near-infrared regulated photothermal/photodynamictherapy of drug-resistant bacterial infections. J. Colloid. Interf. Sci., 599,390–403. DOI
- Seidi, F., Shamsabadi, A. A., Firouzjaei, M. D., Elliott, M., Saeb, M. R.,Huang, Y., Li, C., Xiao, H., Anasori, B. (2023) MXenes Antibacterial Propertiesand Applications: A Review and Perspective, 19(14), 2206716. DOI
- Zhou, X. M., Shen, Z. Y., Wu, Y. X., Lin, S., Wang, M. D., Xu, T., Wang, L.L., Sadiq, S., Jiao, X. H., Wu, P. (2024) Development of a rapid visual detectiontechnology for BmNPV based on CRISPR/Cas13a system. J. Invertebr. Pathol.,203, 108072. DOI
- Liu, F., Peng, J., Lei, Y.-M., Liu, R.-S., Jin, L., Liang, H., et al. (2022)Electrochemical detection of ctDNA mutation in non-small cell lung cancerbased on CRISPR/Cas12a system. Sens. Actuators B Chem., 362, 131807. DOI
- Yuan, B., Yuan, C., Li, L., Long, M., Chen, Z. (2022) Application of theCRISPR/Cas System in Pathogen Detection: A Review. Molecules, 27(20),6999. DOI
- Li, H., Yang, J., Wu, G., Weng, Z., Song, Y., Zhang, Y., Vanegas, J. A.,Avery, L., Gao, Z., Sun, H., Chen, Y., Dieckhaus, K. D. (2022) Amplification-Free Detection of SARS-CoV-2 and Respiratory Syncytial Virus Using CRISPRCas13a and Graphene Field-Effect Transistors. Angew. Chem. Int. Ed., 61(32),e202203826. DOI
- Zhang, X., Li, Z., Yang, L., Hu, B., Zheng, Q., Man, J., Cao, (2024) J.CRISPR/Cas12a-Derived Photoelectrochemical Aptasensor Based on AuNanoparticle-Attached CdS/UiO-66-NH2 Heterostructures for the Rapid andSensitive Detection of Ochratoxin A. J. Agric. Food. Chem., 72(1), 874-882. DOI
- Du, H., Yin, T., Wang, J., Jie, G. (2023) MultifunctionalPhotoelectrochemical Biosensor Based on ZnIn2S4/ZnS QDs@Au-Ag-Reversed Photocurrent of Cu-Metal-Organic Framework Coupled withCRISPR/Cas-12a-Shearing for Assay of Dual Targets. Anal. Chem., 95(17),7053-7061. DOI
- Kong, L., Zong, C., Chen, X., Xv, H., Lv, M., Li, C. (2024) CRISPR/Cas12atrans-cleavage mediated photoelectrochemical biosensor based on zeoliticimidazolate framework-67 for ATP determination. Mikrochim. Acta, 191(7),403. DOI
- Yan, X., Li, H., Yin, T., Jie, G., Zhou, H. (2022) Photoelectrochemicalbiosensing platform based on in situ generated ultrathin covalent organicframework film and AgInS2 QDs for dual target detection of HIV and CEA.Biosens. Bioelectron., 217, 114694. DOI
- Mousavi, S. M., Hashemi, S. A., Nezhad, F. F., Binazadeh, M.,Dehdashtijahromi, M., Omidifar, N., Ghahramani, Y., Lai, C. W., Chiang, W.-H.,Gholami, A. (2023) Innovative Metal-Organic Frameworks for Targeted OralCancer Therapy: A Review. Materials (Basel), 16(13), 4685. DOI
- Cai, M., Ni, B., Hu, X., Wang, K., Yin, D., Chen, G., Fu, T., Zhu, R., Dong,X., Qu, C., et al. (2022) An investigation of IRMOF-16 as a pH-responsivedrug delivery carrier of curcumin. J. Sci. Adv. Mater. Devices, 7, 100507. DOI
- Tan, G., Zhong, Y., Yang, L., Jiang, Y., Liu, J., Ren, F. (2020) Amultifunctional MOF-based nanohybrid as injectable implant platform for drugsynergistic oral cancer therapy. Chem. Eng. J., 390, 124446. DOI
- Yang, K., Yang, K., Chao, S., Wen, J., Pei, Y., Pei, Z. (2018) Asupramolecular hybrid material constructed from pillar [6] arene-based hostguestcomplexation and ZIF-8 for targeted drug delivery. Chem. Commun., 54,9817-9820. DOI
- Wu, M.-X., Yan, H.-J., Gao, J., Cheng, Y., Yang, J., Wu, J.-R. et al. (2018)Multifunctional Supramolecular Materials Constructed from Polypyrrole@UiO-66 Nanohybrids and Pillararene Nanovalves for Targeted ChemophotothermalTherapy. ACS Appl. Mater. Interfaces, 10, 34655-34663. DOI
- Wu, X., Zhang, Y., Lu, Y., Pang, S., Yang, K., Tian, Z. et al. (2017)Synergistic and targeted drug delivery based on nano-CeO2 capped withgalactose functionalized pillar[5]arenevia host-guest interactions. J. Mater.Chem. B, 5, 3483-3487. DOI
- Wu, M., Gao, J., Wang, F., Yang, J., Song, N., Jin, X. et al. (2018)Multistimuli Responsive Core-Shell Nanoplatform Constructed from Fe3O4@MOF Equipped with Pillar[6]arene Nanovalves. Small, 14, 1704440. DOI
- Yu, G., Yang, J., Fu, X., Wang, Z., Shao, L., Mao, Z. et al. (2018)Supramolecular Hybrid Material Constructed from Graphene Oxide andPillar[6]arene-Based Host-Guest Complex as a Ultrasound and PhotoacousticSignals Nanoamplifier. Mater. Horiz, 5, 429-435. DOI
- Yao, Y., Wang, Y., Huang, F. (2014) Synthesis of various supramolecularhybrid nanostructures based on pillar[6]arene modified gold nanoparticles/nanorods and their application in pH- and NIR-triggered controlled release.Chem. Sci., 5, 4312-4316. DOI. org/10.1039/C4SC01647E
- Tan, X., Zhang, Z., Cao, T., Zeng, W., Huang, T., Zhao, G. (2019)Control Assembly of Pillar[6]arene-Modified Ag Nanoparticles on CovalentOrganic Framework Surface for Enhanced Sensing Performance towardParaquat. ACS Sustain. Chem. Eng. 7(24), 20051–20059. DOI
- Zhang, Y., Li, Q., Liu, C., Shan, X., Chen, X., Dai, W., et al. (2018) Thepromoted effect of a metal–organic frameworks (ZIF-8) on Au/TiO2 for COoxidation at room temperature both in dark and under visible light irradiation.Appl. Catal. B, 224, 283–294. DOI
- Wang, W., Ibarlucea, B. C., Huang, R., Dong, Al., Aiti, M., Huang, S.,Cuniberti, G. (2024) Multi-metallic MOF based composites for environmentalapplications: synergizing metal centers and interactions. Nanoscale Horizons, 9,1432-1474. DOI
- Ahmadijokani, F., Ghaffarkhah, A., Molavi, H., Dutta, S., Yi, Lu, Wuttke,S., Kamkar, M., Rojas, O. J., Arjmand, M. (2024) COF and MOF Hybrids:Advanced Materials for Wastewater Treatment. Adv. Funct. Mater., 34(43),2305527. DOI
- Machado, T. F., Serra, M. E. S., Murtinho, D., Valente, A. J. M.,Naushad, M. (2021) Covalent Organic Frameworks: Synthesis, Propertiesand Applications—An Overview. Polymers, 13(6), 970. DOI