Modeling the Blood-brain Barrier Using Rat Brain Cell Cultures
Main Article Content
Abstract
Permeability of the blood-brain barrier (BBB) represents a significant problem for most promising drugs used for treating brain diseases due to its high selectivity. The neurovascular unit, which includes neurons, interneurons, astrocytes, the basal membrane, smooth muscle cells, pericytes, endothelial cells, and the extracellular matrix, forms an anatomically and functionally cohesive structure that ensures effective regulation of cerebral blood flow. In vitro modeling of the BBB is a relevant and practically significant task for studying the penetration of therapeutic agents into the brain. This study presents a BBB model consisting of endothelial cells, pericytes, and astrocytes, which partially mimics the in vivo layers of the BBB. Despite some limitations, such as incomplete matching of astrocyte location, the model demonstrates high expression of tight junction proteins and optimal TEER values of the endothelial cell monolayer, making it suitable for studying the permeability of the BBB to various substances, including drugs and nanoparticles.
Article Details
References
- Cherkashova, E. A., Leonov, G. E., Namestnikova, D. D., Solov'eva, A. A., Gubskii, I. L., Bukharova, T. B., Gubskii, L. V., Goldstein, D. V., & Yarygin, K. N. (2020). Methods of Generation of Induced Pluripotent Stem Cells and Their Application for the Therapy of Central Nervous System Diseases. Bulletin of experimental biology and medicine, 168(4), 566–573. DOI
- Vasconcelos-dos-Santos, A., Rosado-de-Castro, P.H., Lopes de Souza, S.A., Da Costa Silva, J., Ramos, A.B., Rodriguez de Freitas, G., Barbosa da Fonseca, L.M., Gutfilen, B., Mendez-Otero, R. (2012) Intravenous and intra-arterial administration of bone marrow mononuclear cells after focal cerebral ischemia: Is there a difference in biodistribution and efficacy? Stem Cell Res, 9, 1–8. DOI
- Martínez-Garza, D.M., Cantú-Rodríguez, O.G., Jaime-Pérez, J.C., Gutiérrez-Aguirre, C.H., Góngora-Rivera, J.F., Gómez-Almaguer, D. (2016) Current state and perspectives of stem cell therapy for stroke. Med. Univ, 18, 169–180. DOI
- Harder, D.R., Zhang, C., Gebremedhin, D. (2002) Astrocytes function in matching blood flow to metabolic activity. News Physiol. Sci., 17, 27-31. DOI
- Muoio, V., Persson, P.B., Sendeski, M.M. (2014) The neurovascular unit - concept review. Acta Physiol (Oxf), 210(4), 790-798. DOI
- Schaeffer, S., Iadecola, C. (2021) Revisiting the neurovascular unit. Nat. Neurosci., 24(9), 1198-1209. DOI
- Yarygin, K.N., Namestnikova, D.D., Sukhinich, K.K., Gubskiy, I.L., Majouga, A.G., Kholodenko, I.V. (2021) Cell therapy of stroke: do the intra-arterially transplanted mesenchymal stem cells cross the blood-brain barrier? Cells, 10(11), 2997. DOI
- Helms, H. C., Abbott, N. J., Burek, M., Cecchelli, R., Couraud, P. O., Deli, M. A., Förster, C., Galla, H. J., Romero, I. A., Shusta, E. V., Stebbins, M. J., Vandenhaute, E., Weksler, B., & Brodin, B. (2016). In vitro models of the blood-brain barrier: An overview of commonly used brain endothelial cell culture models and guidelines for their use. Journal of cerebral blood flow and metabolism : official journal of the International Society of Cerebral Blood Flow and Metabolism, 36(5), 862–890. DOI
- Liu, H., Li, Y., Lu, S., Wu, Y., Sahi, J. (2014) Temporal expression of transporters and receptors in a rat primary co-culture blood-brain barrier model. Xenobiotica, 44(10), 941-951. DOI
- Perrière, N., Yousif, S., Cazaubon, S., Chaverot, N., Bourasset, F., Cisternino, S., Declèves, X., Hori, S., Terasaki, T., Deli, M., Scherrmann, J.M., Temsamani, J., Roux, F., Couraud, P.O. (2007) A functional in vitro model of rat blood-brain barrier for molecular analysis of efflux transporters. Brain Res, 1150, 1-13. DOI
- Nakagawa, S., Deli, M.A., Kawaguchi, H., Shimizudani, T., Shimono, T., Kittel, A., Tanaka, K., Niwa, M. (2009) A new blood-brain barrier model using primary rat brain endothelial cells, pericytes and astrocytes. Neurochemistry international, 54(3-4), 253-263. DOI
- Bernas, M.J., Cardoso, F.L., Daley, S.K., Weinand, M.E., Campos, A.R., Ferreira, A.J., Hoying, J.B., Witte, M.H., Brites, D., Persidsky, Y., Ramirez, S.H., Brito, M.A. (2010) Establishment of primary cultures of human brain microvascular endothelial cells to provide an in vitro cellular model of the blood-brain barrier. Nature Protocols, 5(7), 1265-1272. DOI
- Weksler, B., Romero, I.A., Couraud, P.O. (2013) The hCMEC/D3 cell line as a model of the human blood brain barrier. Fluids Barriers CNS, 10(1), 16. DOI
- Nahon, D.M., Vila Cuenca, M., van den Hil, F.E., Hu, M., de Korte, T., Frimat, J.P., van den Maagdenberg, A.M.J.M., Mummery, C.L., Orlova, V.V. (2024) Self-assembling 3D vessel-on-chip model with hiPSC-derived astrocytes. Stem Cell Reports, 19(7), 946-956. DOI
- Gopinadhan, A., Hughes, J.M., Conroy, A.L., John, C.C., Canfield, S.G., Datta, D. (2024) A human pluripotent stem cell-derived in vitro model of the blood-brain barrier in cerebral malaria. Fluids Barriers CNS, 21(1), 38. DOI
- Naik, P., & Cucullo, L. (2012). In vitro blood-brain barrier models: current and perspective technologies. Journal of pharmaceutical sciences, 101(4), 1337–1354. DOI
- Williams-Medina, A., Deblock, M., & Janigro, D. (2021). In vitro Models of the Blood-Brain Barrier: Tools in Translational Medicine. Frontiers in medical technology, 2, 623950. DOI
- Veszelka, S., Tóth, A., Walter, F. R., Tóth, A. E., Gróf, I., Mészáros, M., Bocsik, A., Hellinger, É., Vastag, M., Rákhely, G., & Deli, M. A. (2018). Comparison of a Rat Primary Cell-Based Blood-Brain Barrier Model With Epithelial and Brain Endothelial Cell Lines: Gene Expression and Drug Transport. Frontiers in molecular neuroscience, 11, 166. DOI
- Rakocevic, J., Orlic, D., Mitrovic-Ajtic, O., Tomasevic, M., Dobric, M., Zlatic, N., Milasinovic, D., Stankovic, G., Ostojić, M., Labudovic-Borovic, M. (2017) Endothelial cell markers from clinician's perspective. Exp Mol Pathol, 102(2), 303-313. DOI
- Morita, K., Sasaki, H., Furuse, M., Tsukita, S. (1999) Endothelial claudin: claudin-5/TMVCF constitutes tight junction strands in endothelial cells. J Cell Biol, 147(1), 185-194. DOI
- Rahner, C., Mitic, L.L., Anderson, J.M. (2001) Heterogeneity in expression and subcellular localization of claudins 2, 3, 4, and 5 in the rat liver, pancreas, and gut. Gastroenterology, 120(2), 411-422. DOI
- Reyes, J.L., Lamas, M., Martin, D., del Carmen Namorado, M., Islas, S., Luna, J., Tauc, M., González-Mariscal, L. (2002) The renal segmental distribution of claudins changes with development. Kidney Int, 62(2), 476-487. DOI
- Morita, K., Sasaki, H., Furuse, K., Furuse, M., Tsukita, S., Miyachi, Y. (2003) Expression of claudin-5 in dermal vascular endothelia. Exp Dermatol, 12(3), 289-295. DOI
- Abbott, N.J., Patabendige, A.A., Dolman, D.E., Yusof, S.R., Begley, D.J. (2010) Structure and function of the blood-brain barrier. Neurobiol Dis, 37(1), 13-25. DOI
- Butt, A.M., Jones, H.C., Abbott, N.J. (1990) Electrical resistance across the blood-brain barrier in anaesthetized rats: a developmental study. J Physiol, 429, 47-62. DOI
- Park, J.S., Choe, K., Khan, A., Jo, M.H., Park, H.Y., Kang, M.H., Park, T.J., Kim, M.O. (2023) Establishing co-culture blood-brain barrier models for different neurodegeneration conditions to understand its effect on BBB integrity. Int J Mol Sci, 24(6), 5283. DOI
- Cummins, P.M. (2012) Occludin: one protein, many forms. Mol Cell Biol, 32(2), 242-250. DOI
- Metcalf, D.J., Nightingale, T.D., Zenner, H.L., Lui-Roberts, W.W., Cutler, D.F. (2008) Formation and function of Weibel-Palade bodies. J Cell Sci, 121(Pt 1), 19-27. DOI
- Ruggeri, Z.M. (2007) The role of von Willebrand factor in thrombus formation. Thromb Res, Suppl 1(Suppl 1), S5-9. DOI
- Suidan, G.L., Brill, A., De Meyer, S.F., Voorhees, J.R., Cifuni, S.M., Cabral, J.E., Wagner, D.D. (2013) Endothelial Von Willebrand factor promotes blood-brain barrier flexibility and provides protection from hypoxia and seizures in mice. Arterioscler Thromb Vasc Biol, 33(9), 2112-2120. DOI
- Brozzi, F., Arcuri, C., Giambanco, I., Donato, R. (2009) S100B protein regulates astrocyte shape and migration via interaction with Src kinase: implications for astrocyte development, activation, and growth. J Biol Chem, 284(13), 8797-8811. DOI
- Chen, H., Ji, J., Zhang, L., Luo, C., Chen, T., Zhang, Y., Ma, C., Ke, Y., Wang, J. (2024) Nanoparticles coated with brain microvascular endothelial cell membranes can target and cross the blood-brain barrier to deliver drugs to brain tumors. Small, e2306714. DOI
- Nitzsche, F., Müller, C., Lukomska, B., Jolkkonen, J., Deten, A., Boltze, J. (2017) Concise Review: MSC adhesion cascade—insights into homing and transendothelial migration. Stem Cells, 35, 1446–1460. DOI
- Joó, F. (1996) Endothelial cells of the brain and other organ systems: Some similarities and differences. Prog. Neurobiol, 48, 255–257. DOI
- Nakazaki, M., Sasaki, M., Kataoka-Sasaki, Y., Oka, S., Suzuki, J., Sasaki, Y., Nagahama, H., Hashi, K., Kocsis, J.D., Honmou, O. (2019) Intravenous infusion of mesenchymal stem cells improves impaired cognitive function in a cerebral small vessel disease model. Neuroscience, 408, 361–377. DOI