Моделирование гематоэнцефалического барьера с использованием культур клеток мозга крысы
##plugins.themes.bootstrap3.article.main##
Аннотация
Проницаемость гематоэнцефалического барьера (ГЭБ) для большинства перспективных лекарственных препаратов, предназначенных для лечения заболеваний головного мозга, является серьезным препятствием из-за его высокой селективности. Нейроваскулярная единица, включающая нейроны, интернейроны, астроциты, базальную мембрану, гладкомышечные клетки, перициты, эндотелиоциты и внеклеточный матрикс, формирует анатомически и функционально целостную структуру, обеспечивающую эффективную регуляцию церебрального кровотока. Моделирование ГЭБ in vitro – актуальная задача, имеющая высокую практическую значимость для изучения проникновения терапевтических агентов в мозг. В данной работе представлена модель ГЭБ, состоящая из эндотелиоцитов, перицитов и астроцитов, которая в определенной степени имитирует in vivo слои ГЭБ. Несмотря на некоторые ограничения, такие как неполное соответствие расположения астроцитов, модель демонстрирует высокую экспрессию белков плотных контактов и оптимальные значения TEER монослоя эндотелиоцитов, что делает её пригодной для исследования проницаемости ГЭБ для различных веществ, включая лекарственные препараты и наночастицы.
##plugins.themes.bootstrap3.article.details##
Библиографические ссылки
- Cherkashova, E. A., Leonov, G. E., Namestnikova, D. D., Solov'eva, A. A., Gubskii, I. L., Bukharova, T. B., Gubskii, L. V., Goldstein, D. V., & Yarygin, K. N. (2020). Methods of Generation of Induced Pluripotent Stem Cells and Their Application for the Therapy of Central Nervous System Diseases. Bulletin of experimental biology and medicine, 168(4), 566–573. DOI
- Vasconcelos-dos-Santos, A., Rosado-de-Castro, P.H., Lopes de Souza, S.A., Da Costa Silva, J., Ramos, A.B., Rodriguez de Freitas, G., Barbosa da Fonseca, L.M., Gutfilen, B., Mendez-Otero, R. (2012) Intravenous and intra-arterial administration of bone marrow mononuclear cells after focal cerebral ischemia: Is there a difference in biodistribution and efficacy? Stem Cell Res, 9, 1–8. DOI
- Martínez-Garza, D.M., Cantú-Rodríguez, O.G., Jaime-Pérez, J.C., Gutiérrez-Aguirre, C.H., Góngora-Rivera, J.F., Gómez-Almaguer, D. (2016) Current state and perspectives of stem cell therapy for stroke. Med. Univ, 18, 169–180. DOI
- Harder, D.R., Zhang, C., Gebremedhin, D. (2002) Astrocytes function in matching blood flow to metabolic activity. News Physiol. Sci., 17, 27-31. DOI
- Muoio, V., Persson, P.B., Sendeski, M.M. (2014) The neurovascular unit - concept review. Acta Physiol (Oxf), 210(4), 790-798. DOI
- Schaeffer, S., Iadecola, C. (2021) Revisiting the neurovascular unit. Nat. Neurosci., 24(9), 1198-1209. DOI
- Yarygin, K.N., Namestnikova, D.D., Sukhinich, K.K., Gubskiy, I.L., Majouga, A.G., Kholodenko, I.V. (2021) Cell therapy of stroke: do the intra-arterially transplanted mesenchymal stem cells cross the blood-brain barrier? Cells, 10(11), 2997. DOI
- Helms, H. C., Abbott, N. J., Burek, M., Cecchelli, R., Couraud, P. O., Deli, M. A., Förster, C., Galla, H. J., Romero, I. A., Shusta, E. V., Stebbins, M. J., Vandenhaute, E., Weksler, B., & Brodin, B. (2016). In vitro models of the blood-brain barrier: An overview of commonly used brain endothelial cell culture models and guidelines for their use. Journal of cerebral blood flow and metabolism : official journal of the International Society of Cerebral Blood Flow and Metabolism, 36(5), 862–890. DOI
- Liu, H., Li, Y., Lu, S., Wu, Y., Sahi, J. (2014) Temporal expression of transporters and receptors in a rat primary co-culture blood-brain barrier model. Xenobiotica, 44(10), 941-951. DOI
- Perrière, N., Yousif, S., Cazaubon, S., Chaverot, N., Bourasset, F., Cisternino, S., Declèves, X., Hori, S., Terasaki, T., Deli, M., Scherrmann, J.M., Temsamani, J., Roux, F., Couraud, P.O. (2007) A functional in vitro model of rat blood-brain barrier for molecular analysis of efflux transporters. Brain Res, 1150, 1-13. DOI
- Nakagawa, S., Deli, M.A., Kawaguchi, H., Shimizudani, T., Shimono, T., Kittel, A., Tanaka, K., Niwa, M. (2009) A new blood-brain barrier model using primary rat brain endothelial cells, pericytes and astrocytes. Neurochemistry international, 54(3-4), 253-263. DOI
- Bernas, M.J., Cardoso, F.L., Daley, S.K., Weinand, M.E., Campos, A.R., Ferreira, A.J., Hoying, J.B., Witte, M.H., Brites, D., Persidsky, Y., Ramirez, S.H., Brito, M.A. (2010) Establishment of primary cultures of human brain microvascular endothelial cells to provide an in vitro cellular model of the blood-brain barrier. Nature Protocols, 5(7), 1265-1272. DOI
- Weksler, B., Romero, I.A., Couraud, P.O. (2013) The hCMEC/D3 cell line as a model of the human blood brain barrier. Fluids Barriers CNS, 10(1), 16. DOI
- Nahon, D.M., Vila Cuenca, M., van den Hil, F.E., Hu, M., de Korte, T., Frimat, J.P., van den Maagdenberg, A.M.J.M., Mummery, C.L., Orlova, V.V. (2024) Self-assembling 3D vessel-on-chip model with hiPSC-derived astrocytes. Stem Cell Reports, 19(7), 946-956. DOI
- Gopinadhan, A., Hughes, J.M., Conroy, A.L., John, C.C., Canfield, S.G., Datta, D. (2024) A human pluripotent stem cell-derived in vitro model of the blood-brain barrier in cerebral malaria. Fluids Barriers CNS, 21(1), 38. DOI
- Naik, P., & Cucullo, L. (2012). In vitro blood-brain barrier models: current and perspective technologies. Journal of pharmaceutical sciences, 101(4), 1337–1354. DOI
- Williams-Medina, A., Deblock, M., & Janigro, D. (2021). In vitro Models of the Blood-Brain Barrier: Tools in Translational Medicine. Frontiers in medical technology, 2, 623950. DOI
- Veszelka, S., Tóth, A., Walter, F. R., Tóth, A. E., Gróf, I., Mészáros, M., Bocsik, A., Hellinger, É., Vastag, M., Rákhely, G., & Deli, M. A. (2018). Comparison of a Rat Primary Cell-Based Blood-Brain Barrier Model With Epithelial and Brain Endothelial Cell Lines: Gene Expression and Drug Transport. Frontiers in molecular neuroscience, 11, 166. DOI
- Rakocevic, J., Orlic, D., Mitrovic-Ajtic, O., Tomasevic, M., Dobric, M., Zlatic, N., Milasinovic, D., Stankovic, G., Ostojić, M., Labudovic-Borovic, M. (2017) Endothelial cell markers from clinician's perspective. Exp Mol Pathol, 102(2), 303-313. DOI
- Morita, K., Sasaki, H., Furuse, M., Tsukita, S. (1999) Endothelial claudin: claudin-5/TMVCF constitutes tight junction strands in endothelial cells. J Cell Biol, 147(1), 185-194. DOI
- Rahner, C., Mitic, L.L., Anderson, J.M. (2001) Heterogeneity in expression and subcellular localization of claudins 2, 3, 4, and 5 in the rat liver, pancreas, and gut. Gastroenterology, 120(2), 411-422. DOI
- Reyes, J.L., Lamas, M., Martin, D., del Carmen Namorado, M., Islas, S., Luna, J., Tauc, M., González-Mariscal, L. (2002) The renal segmental distribution of claudins changes with development. Kidney Int, 62(2), 476-487. DOI
- Morita, K., Sasaki, H., Furuse, K., Furuse, M., Tsukita, S., Miyachi, Y. (2003) Expression of claudin-5 in dermal vascular endothelia. Exp Dermatol, 12(3), 289-295. DOI
- Abbott, N.J., Patabendige, A.A., Dolman, D.E., Yusof, S.R., Begley, D.J. (2010) Structure and function of the blood-brain barrier. Neurobiol Dis, 37(1), 13-25. DOI
- Butt, A.M., Jones, H.C., Abbott, N.J. (1990) Electrical resistance across the blood-brain barrier in anaesthetized rats: a developmental study. J Physiol, 429, 47-62. DOI
- Park, J.S., Choe, K., Khan, A., Jo, M.H., Park, H.Y., Kang, M.H., Park, T.J., Kim, M.O. (2023) Establishing co-culture blood-brain barrier models for different neurodegeneration conditions to understand its effect on BBB integrity. Int J Mol Sci, 24(6), 5283. DOI
- Cummins, P.M. (2012) Occludin: one protein, many forms. Mol Cell Biol, 32(2), 242-250. DOI
- Metcalf, D.J., Nightingale, T.D., Zenner, H.L., Lui-Roberts, W.W., Cutler, D.F. (2008) Formation and function of Weibel-Palade bodies. J Cell Sci, 121(Pt 1), 19-27. DOI
- Ruggeri, Z.M. (2007) The role of von Willebrand factor in thrombus formation. Thromb Res, Suppl 1(Suppl 1), S5-9. DOI
- Suidan, G.L., Brill, A., De Meyer, S.F., Voorhees, J.R., Cifuni, S.M., Cabral, J.E., Wagner, D.D. (2013) Endothelial Von Willebrand factor promotes blood-brain barrier flexibility and provides protection from hypoxia and seizures in mice. Arterioscler Thromb Vasc Biol, 33(9), 2112-2120. DOI
- Brozzi, F., Arcuri, C., Giambanco, I., Donato, R. (2009) S100B protein regulates astrocyte shape and migration via interaction with Src kinase: implications for astrocyte development, activation, and growth. J Biol Chem, 284(13), 8797-8811. DOI
- Chen, H., Ji, J., Zhang, L., Luo, C., Chen, T., Zhang, Y., Ma, C., Ke, Y., Wang, J. (2024) Nanoparticles coated with brain microvascular endothelial cell membranes can target and cross the blood-brain barrier to deliver drugs to brain tumors. Small, e2306714. DOI
- Nitzsche, F., Müller, C., Lukomska, B., Jolkkonen, J., Deten, A., Boltze, J. (2017) Concise Review: MSC adhesion cascade—insights into homing and transendothelial migration. Stem Cells, 35, 1446–1460. DOI
- Joó, F. (1996) Endothelial cells of the brain and other organ systems: Some similarities and differences. Prog. Neurobiol, 48, 255–257. DOI
- Nakazaki, M., Sasaki, M., Kataoka-Sasaki, Y., Oka, S., Suzuki, J., Sasaki, Y., Nagahama, H., Hashi, K., Kocsis, J.D., Honmou, O. (2019) Intravenous infusion of mesenchymal stem cells improves impaired cognitive function in a cerebral small vessel disease model. Neuroscience, 408, 361–377. DOI