Justified Choice of a Substrate for Alkaline Phosphatase Based on the Enzymatic Kinetics and Electrochemical Characteristics of Screen-Printed Carbon Electrodes in Immunosensors

Main Article Content

E.A. Nikolaeva
P.A. Lozhkin
E.A. Muchkinova
L.E. Agafonova
A.V. Kuzikov
P.I. Koroleva
V.V. Shumyantseva

Abstract

In this study, a substantiated selection of a substrate for further use in electrochemical enzyme immunoassay is carried out based on the parameters describing the enzymatic kinetics and the electrochemical characteristics of the products of electroenzymatic reactions. Data from an analysis of the electrochemical characteristics of screen-printed graphite electrodes (SPE) using various surface pretreatments are presented. Using SPE pretreatment in sulfuric acid, it was possible to achieve a significant decrease in the background current and lower the detection limit of 1-naphthol, which is a product of the enzymatic reaction catalyzed by alkaline phosphatase, to 0.73 μM in the differential pulse voltammetry (DPV) mode and to 0.09 μM in the chronoamperometry (CA) mode without the use of additional catalysts. The selected substrate and pretreatment were used in a quantitative electrochemical enzyme-linked assay for the determination of procalcitonin (PCT). The sensitivity coefficient and detection limit were 109 nA×mL/mg and 0.8 ng/mL, respectively.

Article Details

How to Cite
Nikolaeva, E., Lozhkin, P., Muchkinova, E., Agafonova, L., Kuzikov, A., Koroleva, P., & Shumyantseva, V. (2025). Justified Choice of a Substrate for Alkaline Phosphatase Based on the Enzymatic Kinetics and Electrochemical Characteristics of Screen-Printed Carbon Electrodes in Immunosensors. Biomedical Chemistry: Research and Methods, 8(4), e00281. https://doi.org/10.18097/BMCRM00281
Section
EXPERIMENTAL RESEARCH

References

  1. Police Patil, A.V., Chuang, Y.-S., Li, C., Wu, C.-C. (2023) Recent Advances in Electrochemical immunosensors with nanomaterial assistance for signal amplification. Biosensors, 13(1), 125. DOI
  2. Chen, H., Zhang, J., Huang, R., Wang, D., Deng, D., Zhang, Q., Luo, L. (2023) The Applications of electrochemical immunosensors in the detection of disease biomarkers: a review. Molecules, 28(8), 3605. DOI
  3. Archakov, A.I., Shumyanceva, V.V, Bulko, T.V., Kurny`shova, A.V., Vagin, M.Y. (2008) Electrochemical biosensor for direct determination of myoglobin and method for its production, Russian State Patent Agency Certificate, No. RU 2367958 C1 of 17.01.2008. https://www.fips.ru/cdfi/fips.dll/ru?ty=29&docid=2367958
  4. Shumyantseva, V.V., Bulko, T.V., Vagin, M.Yu., Suprun, E.V., Archakov, A.I. (2010) Electrochemical immunoanalysis of cardiac myoglobin. Biomeditsinskaya Khimiya, 56(6), 758–768. DOI
  5. Shumkov, A.A., Suprun, E.V., Shatinina, S.Z., Lisitsa, A.V., Shumyantseva, V.V., Archakov, A.I. (2013) Gold and silver nanoparticles for electrochemical detection of cardiac troponin i based on stripping voltammetry. BioNanoScience, 3(2), 216–222. DOI
  6. Bartlett, P.N. (2008) Bioelectrochemistry: fundamentals, experimental techniques and applications. John Wiley & Sons, 494 p.
  7. Gerdan, Z., Saylan, Y., Denizli, A. (2024) Biosensing platforms for cardiac biomarker detection. ACS Omega, 9(9), 9946–9960. DOI
  8. Nazir, S., Iqbal, R.A. (2023) Biosensor for rapid and accurate detection of cardiovascular biomarkers: Progress and prospects in biosensors. Biosensors and Bioelectronics: X, 14, 100388. DOI
  9. Shumyantseva, V.V., Bulko, T.V., Suprun, E.V., Kuzikov, A.V., Agafonova, L.E., Archakov, A.I. (2015) Electrochemical methods for biomedical investigations. Biomeditsinskaya Khimiya, 61(2), 188–202. DOI
  10. Suprun, E., Bulko, T., Lisitsa, A., Gnedenko, O., Ivanov, A., Shumyantseva, V., Archakov, A. (2010) Electrochemical nanobiosensor for express diagnosis of acute myocardial infarction in undiluted plasma. Biosensors and Bioelectronics, 25(7), 1694–1698. DOI
  11. Shumyanceva, V.V., Suprun, E.V., Bulko, T.V., Archakov, A.I. (2010). Gemoproteiny` i sensorny`e sistemy` medicinskogo naznacheniya na ix osnove. In Khimicheskii analiz v meditsinskoi diagnostike (Chemical Analysis in Clinical Diagnistics), Moscow, Nauka, pp. 181–211.
  12. Shumkov, A.A., Suprun, E.V., Shumyanceva, V.V., Archakov, A.I. (2010) Sensorny`e e`lektroximicheskie sistemy` dlya analiza kardiomioglobina. Biomedicina, 1(5), 146–148.
  13. Suprun, E.V., Shilovskaya, A.L., Lisitsa, A.V., Bulko, T.V., Shumyantseva, V.V., Archakov, A.I. (2011) Electrochemical immunosensor based on metal nanoparticles for cardiac myoglobin detection in human blood plasma. Electroanalysis, 23(5), 1051–1057. DOI
  14. Shumyantseva, V.V., Bulko, T.V., Suprun, E.V., Archakov, A.I. (2013) Electrochemical sensor systems based on one-dimensional (1D) nanostructures for analysis of bioaffinity interactions. Biomeditsinskaya Khimiya, 59(2), 209– 218. DOI
  15. Shumkov, A.A, Suprun, E.V., Shumyanceva, V.V., Archakov, A.I. (2011) Sensorny`j e`lement na osnove nanochasticz zolota dlya opredeleniya kardiomarkyorov. Biomedicina, 1(3), 46–49.
  16. Brabec, V., Mornstein, V. (1980) Electrochemical behaviour of proteins at graphite electrodes. I. Electrooxidation of proteins as a new probe of protein structure and reactions. Biochimica et Biophysica Acta (BBA) - Protein Structure, 625(1), 43–50. DOI
  17. Reynaud, J.A., Malfoy, B., Bere, A. (1980) The electrochemical oxidation of three proteins: RNAase A, bovine serum albumin and concanavalin A at solid electrodes. Journal of Electroanalytical Chemistry and Interfacial Electrochemistry, 116, 595–606. DOI
  18. Brabec, V., Mornstein, V. (1980) Electrochemical behaviour of proteins at graphite electrodes. Biophysical Chemistry, 12(2), 159–165. DOI
  19. Malfoy, B., Reynaud, J.A. (1980) Electrochemical investigations of amino acids at solid electrodes. Journal of Electroanalytical Chemistry and Interfacial Electrochemistry, 114(2), 213–223. DOI
  20. Reynaud, J.A., Malfoy, B., Canesson, P. (1980) Electrochemical investigations of amino acids at solid electrodes. Journal of Electroanalytical Chemistry and Interfacial Electrochemistry, 114(2), 195–211. DOI
  21. Kim, J., Park, M. (2021) Recent progress in electrochemical immunosensors. Biosensors, 11(10), 360. DOI
  22. Heineman, W.R., Halsall, H.B. (1985) Strategies for electrochemical immunoassay. Analytical Chemistry, 57(12), 1321A-1331A. DOI
  23. Nellaiappan, S., Mandali, P.K., Prabakaran, A., Krishnan, U.M. (2021) Electrochemical immunosensors for quantification of procalcitonin: progress and prospects. Chemosensors, 9(7), 182. DOI
  24. González-Sánchez, M.I., Gómez-Monedero, B., Agrisuelas, J., Iniesta, J., Valero, E. (2019) Electrochemical performance of activated screen printed carbon electrodes for hydrogen peroxide and phenol derivatives sensing. Journal of Electroanalytical Chemistry, 839, 75–82. DOI
  25. Huang, J., Zu, Y., Zhang, L., Cui, W. (2024) Progress in procalcitonin detection based on immunoassay. Research, 7, 0345. DOI
  26. Bekhit, M., Blazek, T., Gorski, W. (2021) Electroanalysis of enzyme activity in small biological samples: alkaline phosphatase. Analytical Chemistry, 93(42), 14280–14286. DOI
  27. Bard, A.J., Faulkner, L.R. (2001) Electrochemical methods - fundamentals and applications (2nd ed). Wiley, 850 p.
  28. Saxena, R., Srivastava, S. (2019) An insight into impedimetric immunosensor and its electrical equivalent circuit. Sensors and Actuators B: Chemical, 297, 126780. DOI
  29. Shumyantseva, V.V., Kuzikov, A.V., Masamrekh, R.A., Bulko, T.V., Archakov, A.I. (2018) From electrochemistry to enzyme kinetics of cytochrome P450. Biosensors and Bioelectronics, 121, 192–204. DOI
  30. Zhao, N., Shi, J., Li, M., Xu, P., Wang, X., Li, X. (2022) Alkaline Phosphatase electrochemical micro-sensor based on 3D graphene networks for the monitoring of osteoblast activity. Biosensors, 12(6), 406. DOI
  31. Morrin, A., Killard, A.J., Smyth, M.R. (2003) Electrochemical characterization of commercial and home-made screen-printed carbon electrodes. Analytical Letters, 36(9), 2021–2039. DOI
  32. Randviir, E.P. (2018) A cross examination of electron transfer rate constants for carbon screen-printed electrodes using Electrochemical Impedance Spectroscopy and cyclic voltammetry. Electrochimica Acta, 286, 179–186. DOI