Подбор субстрата для щелочной фосфатазы на основе ферментативной кинетики и электрохимических характеристик печатных углеродных электродов для применения в иммуноферментных биосенсорах
##plugins.themes.bootstrap3.article.main##
Аннотация
Проведен обоснованный выбор субстрата для дальнейшего применения в электрохимическом ферментном иммуноанализе на основе параметров, описывающих ферментативную кинетику, и электрохимических характеристик продуктов электроферментативных реакций. Приведены данные анализа электрохимических характеристик печатных графитовых электродов (ПГЭ) с применением различных предобработок поверхности. С использованием предобработки ПГЭ в серной кислоте удалось добиться значительного снижения фонового тока и снизить предел обнаружения 1-нафтола (продукта ферментативной реакции, катализируемой щелочной фосфатазой) до 0.73 мкМ в режиме дифференциально-импульсной вольтамперометрии (ДИВА) и до 0.09 мкМ в режиме хроноамперометрии (ХА) без применения дополнительных катализаторов. Выбранные субстрат и предобработка применены в количественном иммуноферментном анализе для определения прокальцитонина. Коэффициент чувствительности и предел обнаружения составили 109 нА×мл/мг и 0.8 нг/мл соответственно.
##plugins.themes.bootstrap3.article.details##
Библиографические ссылки
- Police Patil, A.V., Chuang, Y.-S., Li, C., Wu, C.-C. (2023) Recent Advances in Electrochemical immunosensors with nanomaterial assistance for signal amplification. Biosensors, 13(1), 125. DOI
- Chen, H., Zhang, J., Huang, R., Wang, D., Deng, D., Zhang, Q., Luo, L. (2023) The Applications of electrochemical immunosensors in the detection of disease biomarkers: a review. Molecules, 28(8), 3605. DOI
- Archakov, A.I., Shumyanceva, V.V, Bulko, T.V., Kurny`shova, A.V., Vagin, M.Y. (2008) Electrochemical biosensor for direct determination of myoglobin and method for its production, Russian State Patent Agency Certificate, No. RU 2367958 C1 of 17.01.2008. https://www.fips.ru/cdfi/fips.dll/ru?ty=29&docid=2367958
- Shumyantseva, V.V., Bulko, T.V., Vagin, M.Yu., Suprun, E.V., Archakov, A.I. (2010) Electrochemical immunoanalysis of cardiac myoglobin. Biomeditsinskaya Khimiya, 56(6), 758–768. DOI
- Shumkov, A.A., Suprun, E.V., Shatinina, S.Z., Lisitsa, A.V., Shumyantseva, V.V., Archakov, A.I. (2013) Gold and silver nanoparticles for electrochemical detection of cardiac troponin i based on stripping voltammetry. BioNanoScience, 3(2), 216–222. DOI
- Bartlett, P.N. (2008) Bioelectrochemistry: fundamentals, experimental techniques and applications. John Wiley & Sons, 494 p.
- Gerdan, Z., Saylan, Y., Denizli, A. (2024) Biosensing platforms for cardiac biomarker detection. ACS Omega, 9(9), 9946–9960. DOI
- Nazir, S., Iqbal, R.A. (2023) Biosensor for rapid and accurate detection of cardiovascular biomarkers: Progress and prospects in biosensors. Biosensors and Bioelectronics: X, 14, 100388. DOI
- Shumyantseva, V.V., Bulko, T.V., Suprun, E.V., Kuzikov, A.V., Agafonova, L.E., Archakov, A.I. (2015) Electrochemical methods for biomedical investigations. Biomeditsinskaya Khimiya, 61(2), 188–202. DOI
- Suprun, E., Bulko, T., Lisitsa, A., Gnedenko, O., Ivanov, A., Shumyantseva, V., Archakov, A. (2010) Electrochemical nanobiosensor for express diagnosis of acute myocardial infarction in undiluted plasma. Biosensors and Bioelectronics, 25(7), 1694–1698. DOI
- Shumyanceva, V.V., Suprun, E.V., Bulko, T.V., Archakov, A.I. (2010). Gemoproteiny` i sensorny`e sistemy` medicinskogo naznacheniya na ix osnove. In Khimicheskii analiz v meditsinskoi diagnostike (Chemical Analysis in Clinical Diagnistics), Moscow, Nauka, pp. 181–211.
- Shumkov, A.A., Suprun, E.V., Shumyanceva, V.V., Archakov, A.I. (2010) Sensorny`e e`lektroximicheskie sistemy` dlya analiza kardiomioglobina. Biomedicina, 1(5), 146–148.
- Suprun, E.V., Shilovskaya, A.L., Lisitsa, A.V., Bulko, T.V., Shumyantseva, V.V., Archakov, A.I. (2011) Electrochemical immunosensor based on metal nanoparticles for cardiac myoglobin detection in human blood plasma. Electroanalysis, 23(5), 1051–1057. DOI
- Shumyantseva, V.V., Bulko, T.V., Suprun, E.V., Archakov, A.I. (2013) Electrochemical sensor systems based on one-dimensional (1D) nanostructures for analysis of bioaffinity interactions. Biomeditsinskaya Khimiya, 59(2), 209– 218. DOI
- Shumkov, A.A, Suprun, E.V., Shumyanceva, V.V., Archakov, A.I. (2011) Sensorny`j e`lement na osnove nanochasticz zolota dlya opredeleniya kardiomarkyorov. Biomedicina, 1(3), 46–49.
- Brabec, V., Mornstein, V. (1980) Electrochemical behaviour of proteins at graphite electrodes. I. Electrooxidation of proteins as a new probe of protein structure and reactions. Biochimica et Biophysica Acta (BBA) - Protein Structure, 625(1), 43–50. DOI
- Reynaud, J.A., Malfoy, B., Bere, A. (1980) The electrochemical oxidation of three proteins: RNAase A, bovine serum albumin and concanavalin A at solid electrodes. Journal of Electroanalytical Chemistry and Interfacial Electrochemistry, 116, 595–606. DOI
- Brabec, V., Mornstein, V. (1980) Electrochemical behaviour of proteins at graphite electrodes. Biophysical Chemistry, 12(2), 159–165. DOI
- Malfoy, B., Reynaud, J.A. (1980) Electrochemical investigations of amino acids at solid electrodes. Journal of Electroanalytical Chemistry and Interfacial Electrochemistry, 114(2), 213–223. DOI
- Reynaud, J.A., Malfoy, B., Canesson, P. (1980) Electrochemical investigations of amino acids at solid electrodes. Journal of Electroanalytical Chemistry and Interfacial Electrochemistry, 114(2), 195–211. DOI
- Kim, J., Park, M. (2021) Recent progress in electrochemical immunosensors. Biosensors, 11(10), 360. DOI
- Heineman, W.R., Halsall, H.B. (1985) Strategies for electrochemical immunoassay. Analytical Chemistry, 57(12), 1321A-1331A. DOI
- Nellaiappan, S., Mandali, P.K., Prabakaran, A., Krishnan, U.M. (2021) Electrochemical immunosensors for quantification of procalcitonin: progress and prospects. Chemosensors, 9(7), 182. DOI
- González-Sánchez, M.I., Gómez-Monedero, B., Agrisuelas, J., Iniesta, J., Valero, E. (2019) Electrochemical performance of activated screen printed carbon electrodes for hydrogen peroxide and phenol derivatives sensing. Journal of Electroanalytical Chemistry, 839, 75–82. DOI
- Huang, J., Zu, Y., Zhang, L., Cui, W. (2024) Progress in procalcitonin detection based on immunoassay. Research, 7, 0345. DOI
- Bekhit, M., Blazek, T., Gorski, W. (2021) Electroanalysis of enzyme activity in small biological samples: alkaline phosphatase. Analytical Chemistry, 93(42), 14280–14286. DOI
- Bard, A.J., Faulkner, L.R. (2001) Electrochemical methods - fundamentals and applications (2nd ed). Wiley, 850 p.
- Saxena, R., Srivastava, S. (2019) An insight into impedimetric immunosensor and its electrical equivalent circuit. Sensors and Actuators B: Chemical, 297, 126780. DOI
- Shumyantseva, V.V., Kuzikov, A.V., Masamrekh, R.A., Bulko, T.V., Archakov, A.I. (2018) From electrochemistry to enzyme kinetics of cytochrome P450. Biosensors and Bioelectronics, 121, 192–204. DOI
- Zhao, N., Shi, J., Li, M., Xu, P., Wang, X., Li, X. (2022) Alkaline Phosphatase electrochemical micro-sensor based on 3D graphene networks for the monitoring of osteoblast activity. Biosensors, 12(6), 406. DOI
- Morrin, A., Killard, A.J., Smyth, M.R. (2003) Electrochemical characterization of commercial and home-made screen-printed carbon electrodes. Analytical Letters, 36(9), 2021–2039. DOI
- Randviir, E.P. (2018) A cross examination of electron transfer rate constants for carbon screen-printed electrodes using Electrochemical Impedance Spectroscopy and cyclic voltammetry. Electrochimica Acta, 286, 179–186. DOI
