Стероидные ингибиторы CYP17A1 – платформа для разработки новых противоопухолевых агентов
##plugins.themes.bootstrap3.article.main##
Аннотация
Обзор посвящен результатам исследований новых стероидных ингибиторов CYP17A1 и структурно родственных соединений, опубликованным за последнее десятилетие. Он состоит из шести глав, в которых рассматриваются новые мишени для известных ингибиторов CYP17A1 – абиратерона и галетерона, противоопухолевая и антипролиферативная активность основных метаболитов и новых синтетических производных абиратерона и галетерона, а также других азотсодержащих производных андростана и прегнана. Приведены структуры 354 новых стероидных производных и данные об их влиянии на стероидогенез и пролиферацию клеток – процессы, вовлечённые в развитие опухоли и поддержание её роста. Анализ цитированной литературы позволяет рассматривать стероидные ингибиторы CYP17A1 как “мультитаргетные” агенты с высоким фармакологическим потенциалом.
##plugins.themes.bootstrap3.article.details##
Библиографические ссылки
- Huggins, C. & Hodges, C. V. (1941). Studies on Prostatic Cancer. I. The Effect of Castration, of Estrogen and of Androgen Injection on Serum Phosphatases in Metastatic Carcinoma of the Prostate. Cancer Reseach, 1(4), 293-297.
- Huggins, C, Stevens R. E., Hodges C. V. (1941). Studies on prostatic cancer: II. The effects of castration on advanced carcinoma of the prostate gland. Archives of surgery. 43(2), 209–223. DOI
- Kan, P. B.; Hirst, M. A.; Feldman, D. (1985). Inhibition of steroidogenic cytochrome P-450 enzymes in rat testis by ketoconazole and related imidazole anti-fungal drugs. Journal Steroid Biochemistry, 23(6A), 1023-1029. DOI
- de Bono, J. S., Logothetis, C. J., Molina, A., Fizazi, K., North, S., Chu, L., et al. (2011). Abiraterone and increased survival in metastatic prostate cancer. New England Journal of Medicine, 364, 1995–2005. DOI
- Handratta, V.D., Vasaitis, T.S., Njar, V.C.O., Gediya, L.K., Kataria, R., Chopra, P., Newman, D., Farquhar, R., Guo, Z., Qiu, Y., Brodie, A.M.H. (2005). Novel C-17-heteroaryl steroidal CYP17 inhibitors/antiandrogens: Synthesis, in vitro biological activity, pharmacokinetics, and antitumor activity in the LAPC4 human prostate cancer xenograft model. Journal of Medicinal Chemistry, 48, 2972–2984. DOI
- Clement, O. O., Freeman, C. M., Hartmann, R. W., Handratta, V. D., Vasaitis, T. S., Brodie, A. M. H., Njar, V. C. O. (2003). Three dimensional pharmacophore modeling of human CYP17 inhibitors. Potential agents for prostate cancer therapy. Journal of Medicinal Chemistry, 46 (12), 2345–2351. DOI
- DeVore, N. M. & Scott, E. E. (2012). Cytochrome P450 17A1 structures with prostate cancer drugs Abiraterone and TOK-001. Nature, 482(7383), 116–119. DOI
- Njar, V. C., Brodie, A. M. (1999). Inhibitors of 17a-hydroxylase/17,20-lyase (CYP17): potential agents for the treatment of prostate cancer. Current Pharmaceutical Design, 5, 163–180.
- Hartmann, R. W., Ehmer, P.B., Haidar, S., Hector, M., Jose, J., Klein, C. D. P., et al. (2002). Inhibition of CYP 17, a new strategy for the treatment of prostate cancer. Archiv der Pharmazie, 4, 119–128.
- Bruno, R.D., Njar, V.C. (2007). Targeting cytochrome P450 enzymes: a new approach in anti-cancer drug development. Bioorganic & Medicinal Chemistry, 15(15), 5047–60. DOI
- Baston, E., Leroux, F.R. (2007). Inhibitors of steroidal cytochrome P450 enzymes as targets for drug development. Recent Patents on Anti-Cancer Drug Discovery, 2(1), 31–58. DOI
- Moreira, V. M., Salvador, J. A. R, Vasaitis, T.S., Njar, V.C.O. (2008). CYP17 Inhibitors for Prostate Cancer Treatment – An Update. Current Medicinal Chemistry, 15, 868-899. DOI
- Owen, C. P. (2009). 17α-Hydroxylase/17,20-Lyase (P45017α) Inhibitors in the Treatment of Prostate Cancer. Anti-Cancer Agents in Medicinal Chemistry, 9, 613-626. DOI
- Vasaitis, T. S., Bruno, R. D., Njar, V. C. O. (2011). CYP17 inhibitors for prostate cancer therapy. Journal of Steroid Biochemistry & Molecular Biology, 125, 23–31. DOI
- Salvador, J. A. R., Pinto, R. M. A., Silvestre, S. M. (2013). Steroidal 5α-reductase and 17α-hydroxylase/17,20-lyase (CYP17) inhibitors useful in the treatment of prostatic diseases. Journal of Steroid Biochemistry & Molecular Biology, 137, 199–222. DOI
- Salvador, J. A. R., Moreira, V. M., Silvestre, S. M. (2012). Steroidal CYP17 Inhibitors for Prostate Cancer Treatment: From Concept to Clinic. INTECH. Chapter 12. DOI
- Auchus, M. L., Auchus, R. J. (2012). Human steroid biosynthesis for the oncologist. Journal of Investigative Medicine, 60(2), 495-503. DOI
- Yin, L. & Hu, Q. (2014). CYP17 inhibitors - abiraterone, C17,20-lyase inhibitors and multi-targeting agents. Nature Reviews Urology, 11, 32-42. DOI
- Malikova, J., Brixius-Anderko, S., Udhane, S. S., Parween, S., Dick, B., Bernhardt, R., Pandey, A. V. (2017). CYP17A1 inhibitor abiraterone, an anti-prostate cancer drug, also inhibits the 21-hydroxylase activity of CYP21A2. Journal of Steroid Biochemistry and Molecular Biology, 174, 192-200. DOI
- Mostaghel, E.A., Marck, B., Plymate, S., Vessella, R. L., Balk, S. P., Matsumoto, A. M., Nelson, P. S., Montgomery, R. B. (2011). Resistance to CYP17A1 inhibition with abiraterone in castration resistant prostate cancer: Induction of steroidogenesis and androgen receptor splice variants. Clinical Cancer Research, 17(18), 5913–5925. DOI
- Yip, C. K.Y., Bansal, S., Wong, S. Y., Lau, A. J. (2018). Identification of Galeterone and Abiraterone as Inhibitors of Dehydroepiandrosterone Sulfonation Catalyzed by Human Hepatic Cytosol, SULT2A1, SULT2B1b, and SULT1E1. Drug Metabolism and Disposition. 46(4); 470-482. DOI
- Udhane, S. S., Dick, B., Hu, Q., Hartmann, R. H., Pandey, A. V. (2016). Specificity of anti-prostate cancer CYP17A1 inhibitors on androgen biosynthesis. Biochemical and Biophysical Research Communications, 477(4), 1005-1010. DOI
- Pia, A., Vignani, F., Attard, G., Tucc,i M., Bironzo, P., Scagliotti, G., Arlt, W., Terzolo, M. & Berruti, A. (2013). Strategies for managing ACTH dependent mineralocorticoid excess induced by abiraterone. Cancer Treatment Reviews, 39(8), 966-973. DOI
- Richards, J., Lim, A. C., Hay, C. W., Taylor, A. E, Wingate, A., Nowakowska, K., Pezaro, C., Carreira, S., Goodall, J., Arlt, W., McEwan, I. J., de Bono, J. S., Attard, G. (2012). Interactions of abiraterone, eplerenone, and prednisolone with wild-type and mutant androgen receptor: a rationale for increasing abiraterone exposure or combining with MDV3100. Cancer Research. 72(9), 2176-2182. DOI
- Norris, J. D., Ellison, S. J., Baker, J. G., Stagg, D. B., Wardell, S.E., Park, S., Alley, H. M., Baldi, R. M., Yllanes, A., Andreano, K. J., Stice, J. P., Lawrence, S. A., Eisner, J. R., Price, D. K., Moore, W. R., Formulag, W. D., McDonnell, D. P. (2017). Androgen receptor antagonism drives cytochrome P450 17A1 inhibitor efficacy in prostate cancer. The Journal of Clinical Investigation, 127(6), 2326-2338. DOI
- Bonnefoi, H., Grellety, T., Tredan, O., Saghatchian, M., Dalenc, F., Mailliez, A., L'Haridon, T., Cottu, P., Abadie-Lacourtoisie, S., You, B., Mousseau, M., Dauba, J., Del Piano, F., Desmoulins, I., Coussy, F., Madranges, N., Grenier. J., Bidard, F.C., Proudhon, C., MacGrogan, G., Orsini, C., Pulido, M., Gonçalves, A. (2016). A phase II trial of abiraterone acetate plus prednisone in patients with triple-negative androgen receptor positive locally advanced or metastatic breast cancer (UCBG 12-1). Annals of Oncology, 27(5), 812-818. DOI
- Banerjee, S., Kilburn, L., Bowen, R., Tovey, H., Hall, M., Kaye, S., Rustin, G., Gore, M., McLachlan, J., Attygalle, A., Tunariu, N., Lima, J. P., Chatfield, P., Jeffs, L., Folkerd, E., Hills, M., Perry, S., Attard, G., Dowset, M., Bliss, J. (2016). Principal results of the cancer of the ovary abiraterone trial (CORAL): A phase II study of abiraterone in patients with recurrent epithelial ovarian cancer (CRUKE/12/052). Annals of Oncology, 27(6), LBA33. DOI
- Njar, V. C., Brodie, A. M. (2015). Discovery and development of Galeterone (TOK-001 or VN/124-1) for the treatment of all stages of prostate cancer. Journal of Medicinal Chemistry, 58(5), 2077-2087. DOI
- Dransfield, D. T., Namdev, N., Jacoby, D. B., Ferrante, K. (2016). Correlation of galeterone-induced degradation of the androgen receptor with inhibition of a deubiquitinating enzyme. Journal of Clinical Oncology, 34(2_suppl), 345-345. DOI
- Hupe, M. C., Offermann, A., Perabo, F., Chandhasin, C., Perner, S., Merseburger, A. S., Cronauer, M. V. (2018). Inhibitoren des Androgenrezeptor-N-Terminus’ Zielgerichtete Therapien gegen die Achillesferse verschiedener Androgenrezeptormoleküle im fortgeschrittenen Prostatakarzinom. Der Urologe, 57(2), 148–154. DOI
- Grossebrummel, H., Peter, T., Mandelkow, R., Weiss, M., Muzzio, D., Zimmermann, U., Walther, R., Jensen, F., Knabbe, C., Zygmunt, M., Burchardt, M., Stope, M. B. (2016). Cytochrome P450 17A1 inhibitor abiraterone attenuates cellular growth of prostate cancer cells independently from androgen receptor signaling by modulation of oncogenic and apoptotic pathways. International Journal of Oncology, 48(2), 793-800. DOI
- Kwegyir-Afful, A.K., Ramalingam, S., Purushottamachar, P., Ramamurthy, V. P., Njar, V. C. (2015). Galeterone and VNPT55 induce proteasomal degradation of AR/AR-V7, induce significant apoptosis via cytochrome c release and suppress growth of castration resistant prostate cancer xenografts in vivo. Oncotarget, 6(29), 27440-27460. DOI
- Kwegyir-Afful, A. K., Bruno, R. D., Purushottamachar, P., Murigi, F.N., Njar, V. C. (2016). Galeterone and VNPT55 disrupt Mnk-eIF4E to inhibit prostate cancer cell migration and invasion. FEBS Journal, 283(21), 3898-3918. DOI
- Kwegyir-Afful, A. K., Murigi, F. N., Purushottamachar, P., Ramamurthy, V. P., Martin, M. S., Njar, V. C. O. (2017). Galeterone and its analogs inhibit Mnk-eIF4E axis, synergize with gemcitabine, impede pancreatic cancer cell migration, invasion and proliferation and inhibit tumor growth in mice. Oncotarget, 8(32), 52381–402. DOI
- Li, Z., Bishop, A. C., Alyamani, M., Garcia, J. A., Dreicer, R., Bunch, D., Liu, J., Upadhyay, S. K., Auchus, R. J., Sharifi, N. (2015). Conversion of abiraterone to D4A drives anti-tumour activity in prostate cancer. Nature, 523 (7560), 347-351. DOI
- Alyamani, M., Li, Z., Berck, M., Li, J., Tang, J., Upadhyay, S., Auchus, R. J., Sharifi, N. (2017). Steroidogenic metabolism of galeterone reveals a diversity of biochemical activities. Cell Chemical Biology. 2017, 24(7), 1-8. DOI
- Li, R., Evaul, K., Sharma, K. K., Chang, K. H., Yoshimoto, J., Liu, J., Auchus, R. J., Sharifi, N. (2012). Abiraterone Inhibits 3β-Hydroxysteroid Dehydrogenase: A Rationale for Increasing Drug Exposure in Castration-Resistant Prostate Cancer, Clinical Cancer Research, 18, 3571–3579. DOI
- Garrido, M., Peng, H. M., Yoshimoto, F. K., Upadhyay, S.K., Bratoeff, E., Auchus, R. J. (2014). A-ring modified steroidal azoles retaining similar potent and slowly reversible CYP17A1 inhibition as abiraterone. The Journal of Steroid Biochemistry and Molecular Biology, 143, 1–10. DOI
- Li, Z., Alyamani, M., Li, J., Rogacki, K., Abazeed, M., Upadhyay, S. K., Balk, S. P., Taplin, M.-E., Auchus, R. J., Sharifi, N. (2016). Redirecting abiraterone metabolism to fine tune prostate cancer anti-androgen therapy. Nature, 533(7604), 547-551. DOI
- Kostin, V. A., Zolottsev, V. A., Kuzikov, A. V., Masamrekh, R. A., Shumyantseva, V. V., Veselovsky, A. V., Stulov, S. V., Novikov, R. A., Timofeev, V. P., Misharin, A. Y. (2016). Oxazolinyl derivatives of [17(20)E]-21-norpregnene differing in the structure of A and B rings. Facile synthesis and inhibition of CYP17A1 catalytic activity. Steroids, 115, 114–122. DOI
- Brossard, D., Zhang, Y., Haider, S. H., Sgobba, M., Khalid, M., Legay, R., Duterque-Coquillaud, M., Galera, P., Rault, S., Dallemagne, P., Moslemi, S., El Kihel, S. (2013). N-substituted Piperazinopyridylsteroid Derivatives as Abiraterone Analogues Inhibit Growth and Induce Pro-apoptosis in Human Hormone-independent Prostate Cancer Cell Lines. Chemical Biology & Drug Design, 82(5), 620–629. DOI
- Purushottamachar, P., Godbole, A. M., Gediya, L. K., Martin, M. S., Vasaitis, T. S., Kwegyir-Afful, A. K., Ramalingam, S., Ates-Alagoz, Z., Njar, V. C. O. (2013). Systematic Structure Modifications of Multitarget Prostate Cancer Drug Candidate Galeterone To Produce Novel Androgen Receptor Down-Regulating Agents as an Approach to Treatment of Advanced Prostate Cancer. Journal of Мedicinal Сhemistry, 56(12), 4880-4898. DOI
- Purushottamachar, P., Kwegyir-Afful, A. K., Martin, M. S., Ramamurthy, S., Ramalingam, S., Njar, V. C. O. (2016). Identification of Novel Steroidal Androgen Receptor Degrading Agents Inspired by Galeterone 3β-Imidazole Carbamate. ACS Мedicinal Сhemistry Letters, 7(7), 708-713. DOI
- Banday, A. H., Mira, B. P., Khazir, J., Suri, K. A., Kumar, H. M. S. (2010). Studies on novel D-ring substituted steroidal pyrazolines as potential anticancer agents. Steroids, 75(12), 805-809. DOI
- Banday, A. H., Akram, S. M. M., Parveen, R., Bashir, N. (2014). Design and synthesis of D-ring steroidal isoxazolines and oxazolines as potential antiproliferative agents against LNCaP, PC-3 and DU-145 cells. Steroids, 87, 93-98. DOI
- Ondre, D., Wolfling, J., Toth, I., Szecsi, M., Julesz, J., Schneider, G. (2009). Steroselective synthesis of some steroidal oxazolines, as novel potential inhibitors of 17α-hydroxylase-C17,20-lyase. Steroids, 74(13-14), 1025–1032. DOI
- Wolfling, J., Oravecz, E. A., Ondre, D., Mernyak, E., Schneider, G., Toth, I., Szecsi, M., Julesz, J. (2006). Stereoselective synthesis of some 17beta-dihydrooxazinyl steroids, as novel presumed inhibitors of 17α-hydroxylase-C17,20-lyase., Steroids, 71(9), 809–816. DOI
- Banday, A. H., Shameem, S. A., Jeelani, S. (2014). Steroidal pyrazolines and pyrazoles as potential 5a-reductase inhibitors: Synthesis and biological evaluation. Steroids, 92, 13–19. DOI
- Ivanyi, Z., Wolfling, J., Gorbe, T., Szecsi, M., Wittmann, T., Schneider, G. (2010). Synthesis of regioisomeric 17β-N-phenylpyrazolyl steroid derivatives and their inhibitory effect on 17α-hydroxylase/C17,20-lyase. Steroids, 75(6), 450–456. DOI
- Ivanyi, Z., Szabo, N., Huber, J., Wolfling, J., Zupko, I., Szecsi, M., Wittmann, T., Schneider, G. (2012). Synthesis of D-ring-substituted (5’R)- and (5’S)-17β-pyrazolinylandrostene epimers and comparison of their potential anticancer activities. Steroids, 77(5), 566-574. DOI
- Ivanyi, Z., Szabo, N., Wolfling, J., Szecsi, M., Julesz, J., Schneider, G. (2012). Novel series of 17β-pyrazolylandrosta-5,16-diene derivatives and their inhibitory effect on 17α-hydroxylase/C17,20-lyase. Steroids, 77(11), 1152-1159. DOI
- Szabo, N., Ivanyi, Z., Szecsi, M., Julesz, J., Mernyak, E., Huber, J., Wolfling, J., Minorics, R., Zupko, I., Schneider, G. (2015). Synthesis of methoxycarbonylpyrazolylandrostene derivatives, and their potential inhibitory effect on androgen biosynthesis and cell proliferation. Steroids, 98, 143–152. DOI
- Kiss, A., Herman, B. E., Gorbe, T., Mernyak, E., Molnar, B., Wolfling, J., Szecsi, M., Schneider, J. (2018). Synthesis of novel 17-triazolyl-androst-5-en-3-ol epimers via Cu(I)-catalyzed azide-alkyne cycloaddition and their inhibitory effect on 17α-hydroxylase/C17,20-lyase. Steroids. DOI
- Silva-Ortiza, A. V., Bratoeff, E., Ramírez-Apan, M. T., García-Becerra, R., Ordaz-Rosado, D., Noyola-Martínez, N., Castillo-Bocanegra, R., Barrera, D. (2016). Synthesis and biological activity of two pregnane derivatives with a triazole or imidazole ring at C-21. The Journal of Steroid Biochemistry and Molecular Biology, 159, 8–18. DOI
- Silva-Ortiz, A. V., Bratoeff, E., Ramírez-Apan, T., Heuze, Y., Sánchez, A., Soriano, J., Cabeza, M., (2015). Synthesis and activity of novel 16-dehydropregnenolone acetate derivatives as inhibitors of type 1 5α-reductase and on cancer cell line SK-LU-1. Bioorganic & Medicinal Chemistry, 23(24), 7535-7542. DOI
- Silva-Ortiz, A. V., Bratoeff, E., Ramírez-Apan, T., Heuze, Y., A., Soriano, J., Moreno, I., Bravo, M., Bautista, L., Cabeza, M. (2017). Synthesis of new derivatives of 21-imidazolyl-16-dehydropregnenolone as inhibitors of 5α-reductase 2 and with cytotoxic activity in cancer cells. Bioorganic & Medicinal Chemistry, 25(5), 1600-1607. DOI
- Banday, A. H., Shameen, S. A., Gupta, B. D., Kumar, H. M. S. (2010). D-ring substituted 1,2,3-triazolyl 20-keto pregnenanes as potential anticancer agents: Synthesis and biological evaluation. Steroids, 75(12), 801-804. DOI
- Szabó, N., Ajduković, J. J., Djurendić, E. A., Sakač, M. N., Ignáth, I., Gardi, J., Mahmoud, G., Klisurić, O. R., Jovanović-Šanta, S., Penov Gaši, K. M., Szécsi, M. (2015). Determination of 17α-hydroxylase-C17,20-lyase (P450 17α) enzyme activities and their inhibition by selected steroidal picolyl and picolinylidene compounds. Acta Biologica Hungarica, 66(1), 41–51. DOI
- Djurendic, E., Ajducovic, J. J., Sakac, M., Csanadi, J., Kojic, V., Bogdanovic, G., Penov Gasi, K. (2012). Synthesis and cytotoxic activity of some 17-picolyl and 17-picolinylidene androstane derivatives. European journal of medicinal chemistry, 54, 784-792. DOI
- Ajducovic, J. J., Djurendic, E., Petri, E. T., Klisuric, O., Celic, A., Sakac, M., Jakimov, D., Penov Gasi, K. (2013). 17(E)-Picolinylidene androstane derivatives as potential inhibitors of prostate cancer cell growth: Antiproliferative activity and molecular docking studies. Bioorganic & Medicinal Chemistry, 21(23), 7257–7266. DOI
- Jakimov, D. S., Kojic, V. V., Aleksic, L. D., Bogdanovic, G. M., Ajdukovic, J. J., Djurendic, E. A., Penov Gaši, K. M., Sakac, M. N., Jovanović-Šanta, S. S. (2015). Androstane derivatives induce apoptotic death in MDA-MB-231 breast cancer cells. Bioorganic & Medicinal Chemistry, 23(22), 7189–7198. DOI
- Gasi, K, M, Djurendic-Brenesel, M., Djurendic, E., Sakac, M., Csanadi, J., Daljev, J., et al. (2007). Synthesis and biological evaluation of some 17-picolyl and 17-picolinylidene androst-5-ene derivatives. Steroids, 72(1), 31–40. DOI
- Djurendic, E., Daljev, J., Sakac, M., Csanadi, J., Jovanovic-Santa, S., Andric, S., Klisuric, O., Kojic, V., Bogdanovic, G., Djurendic-Brenesel, M., Novakovic, S., Penov Gasi, K. (2008). Synthesis of some epoxy and/or N-oxy 17-picolyl and 17-picolinylidene androst-5-ene derivatives and evaluation of their biological activity. Steroids; 73(1), 129–138. DOI
- Kuzikov, A. V., Dugin, N. O., Stulov, S. V., Shcherbinin, D. S., Zharkova, M. S., et al. (2014). Novel oxazolinyl derivatives of pregna-5,17(20)-diene as 17a-hydroxylase/17,20-lyase (CYP17A1) inhibitors, Steroids, 88, 66–71. DOI
- Stulov, S. V., Dugin, N. O., Zharkova, M. S., Shcherbinin, D. S., Kuzikov, A. V., Shumantseva V. V., Misharin, A. Yu., Veselovsky, A. V. (2015). Interaction of Novel Oxazoline Derivatives of 17(20)E-pregna-5,17(20)-Diene with Cytochrome P450 17A1 Biochemistry (Moscow) Supplement Series B: Biomedical Chemistry, 9(2), 114–120. DOI
- Zolottsev, V. A., Tkachev, Y. V., Latysheva, A. S., Kostin, V. A., Novikov, R. A., Timofeev, V. P., Morozevich, G. E., Kuzikov, A. V., Shumyantseva, V. V., Misharin, A. Y. (2018). Comparison of [17(20)E]-21-Norpregnene oxazolinyl and benzoxazolyl derivatives as inhibitors of CYP17A1 activity and prostate carcinoma cells growth. Steroids, 129, 24–34. DOI
- Moreira, V. M. A., Vasaitis, T. S., Guo, Z., Njar, V. C. O, Salvador, J. A. R. (2008). Synthesis of Novel C17 Steroidal Carbamates. Studies on CYP17 Action, Androgen Receptor Binding and Function, and Prostate Cancer Cell Growth. Steroids, 73(12), 1217-1227. DOI
- Nikolić, A. R., Petri, E. T., Klisurić, O. R., Ćelić, A. S., Jakimov, D. S., Djurendić, E. A., Penov Gaši, K. M., Sakač, M. N. (2015). Synthesis and anticancer cell potential of steroidal 16,17-seco-16,17a-dinitriles: Identification of a selective inhibitor of hormone-independent breast cancer cells. Bioorganic & Medicinal Chemistry, 23(4), 703-711. DOI
- Cortes-Benítez, F., Cabeza, M., Ramírez-Apan, M. T., Alvarez-Manrique, B., Bratoeff, E. (2016). Synthesis of 17β-N-arylcarbamoylandrost-4-en-3-one derivatives and their anti-proliferative effect on human androgen-sensitive LNCaP cell line. European Journal of Medicinal Chemistry, 121, 737-746. DOI
- Bratoeff, E., Garrido, M., Ramírez-Apan, M. T., Heuze, M., Sanchez, A., Soriano, J., Cabeza, M. (2014). Effect of dehydroepiandrosterone derivatives on the activity of 5α-reductase isoenzymes and on cancer cell line PC-3. Bioorganic & Medicinal Chemistry, 22(21), 6233-6241. DOI
- Aggarwal, S., Thareja, S., Verma, A., Bhardwaj, T. R., Kumar, M. (2010). An overview on 5α-reductase inhibitors. Steroids, 75(2), 109-153. DOI
- Schmidt, L. J., Tindall, D. J. (2011). Steroid 5α-reductase inhibitors targeting BPH and prostate cancer. The Journal of Steroid Biochemistry and Molecular Biology, 125(1-2), 32–38. DOI
- Vihko, P., Herrala, A., Harkonen, P., Isomaa, V., Kaija, H., Kurkela, R., Pulkka, A. (2006). Control of cell proliferation by steroids: the role of 17HSDs. Molecular and Cellular Endocrinology, 248(1-2), 141-148. DOI
- Day, J., Tutill, H., Purohit, A., Reed, M. (2008). Design and validation of specific inhibitors of 17{beta}-hydroxysteroid dehydrogenases for therapeutic application in breast and prostate cancer, and in endometriosis. Endocrine-Related Cancer, 15(3), 665-692. DOI
- Poirier, D. (2003). Inhibitors of 17beta-hydroxysteroid dehydrogenases. Current Medicinal Chemistry, 10(6), 453-77.
- Poirier, D. (2009). Advances in Development of Inhibitors of 17β-Hydroxysteroid Dehydrogenases. Anti-Cancer Agents in Medicinal Chemistry, 9, 642-60. DOI
- Poirier, D. (2010). 17beta-Hydroxysteroid dehydrogenase inhibitors: a patent review. Expert Opinion on Therapeutic Patents, 20(9), 1123-1145. DOI
- Jegham, H., Maltais, R., Roy, J., Doillon, C., Poirier, D. (2012). Biological evaluation of a new family of aminosteroids that display a selective toxicity for various malignant cell lines. Anticancer Drugs, 23(8), 803–814. DOI
- Maltais, R., Tremblay, M. R., Ciobanu, L. C., Poirier, D. (2004). Steroids and combinatorial chemistry. Journal of Combinatorial Chemistry, 6(4), 443-456. DOI
- Poirier, D. (2008). New cancer drugs targeting the biosynthesis of estrogens and androgens. Drug Development Research, 69(6), 304-318. DOI
- Frank, E., Schneider, G. (2013). Synthesis of sex hormone-derived modified steroids possessing antiproliferative activity. Journal of Steroid Biochemistry & Molecular Biology, 301– 315. DOI