Стратегия экспериментальных исследований интерактомики целевых белков
##plugins.themes.bootstrap3.article.main##
Аннотация
Известно, что межмолекулярные взаимодействия белков и пептидов играют важнейшую роль в процессах жизнедеятельности. Такие взаимодействия могут быть как напрямую связаны с осуществлением различных функций, так и играть роль регулятора. В настоящее время не вызывает сомнения тот факт, что большинство белков функционирует в составе различных молекулярных комплексов. Их формирование происходит за счёт белок-белковых взаимодействий (ББВ), совокупность которых можно определить как “белковый интерактом”. Исследования белковых субинтерактомов очень важны для изучения функций и механизмов регуляции неизвестных или плохо аннотированных белков, понимания архитектуры внутриклеточных молекулярных машин, а также дизайна модуляторов ББВ. Ранее мы применяли комбинации экспериментальных подходов, а также аналитических и препаративных методов для изучения субинтерактомов разных в функциональном отношении клеточных белков, что позволило идентифицировать белковые субинтерактомы некоторых клинически значимых белков человека. В данной работе мы интегрировали полученные ранее результаты в виде экспериментальной платформы, принципы которой представлены блок-схемами. Эти блок-схемы могут помочь широкому кругу читателей выполнить дизайн своих исследований в области изучения белковых субинтерактомов.
##plugins.themes.bootstrap3.article.details##
Библиографические ссылки
- Bludau, I., Aebersold, R. (2020) Proteomic and interactomic insights into the molecular basis of cell functional diversity. Nat. Rev. Mol. Cell Biol., 21(6), 327–340. DOI
- Luck, K., Sheynkman, G.M., Zhang, I., Vidal, M. (2017) Proteome-scale human interactomics. Trends Biochem. Sci., 42(5), 342–354. DOI
- Ershov, P.V., Mezentsev, Y.V., Kopylov, A.T., Yablokov, E.O., Svirid, A.V., Lushchyk, A.Y., Kaluzhskiy, L.A., Gilep, A.A., Usanov, S.A., Medvedev, A.E., Ivanov, A.S. (2019) Affinity isolation and mass spectrometry identification of prostacyclin synthase (PTGIS) subinteractome. Biology (Basel), 8(2), 49. DOI
- Trisciuzzi, D., Villoutreix, B.O., Siragusa, L., Baroni, M., Cruciani, G., Nicolotti, O. (2023) Targeting protein-protein interactions with low molecular weight and short peptide modulators: Insights on disease pathways and starting points for drug discovery. Expert. Opin. Drug. Discov., 18(7), 737–752. DOI
- Ershov, P.V., Yablokov, E., Zgoda, V., Mezentsev, Y., Gnedenko, O., Kaluzhskiy, L., Svirid, A., Gilep, A., Usanov, S.A., Ivanov, A. (2021) A new insight into subinteractomes of functional antagonists: thromboxane (CYP5A1) and prostacyclin (CYP8A1) synthases. Cell Biol. Int., 45(6), 1175–1182. DOI
- Ershov, P., Mezentsev, Y., Gilep, A., Usanov, S., Buneeva, O., Medvedev, A., Ivanov, A. (2017) Isatin-induced increase in the affinity of human ferrochelatase and adrenodoxin reductase interaction. Protein Science, 26(12), 2458–2462. DOI
- Nakamura, K., Yamada, Y., Araki, K. (1986) [Nursing of patients with thoracic injuries]. Kango Gijutsu, 32(9), 1146–1151.
- Carregari, V.C. (2022) Protein extraction and sample preparation methods for shotgun proteomics with central nervous system cells and brain tissue. Adv. Exp. Med. Biol., 1382, 1–15. DOI
- Dapic, I., Baljeu-Neuman, L., Uwugiaren, N., Kers, J., Goodlett, D.R., Corthals, G.L. (2019) Proteome analysis of tissues by mass spectrometry. Mass Spectrom. Rev., 38(4–5), 403–441. DOI
- Cheerathodi, M.R., Meckes, D.G. (2020) BioID combined with mass spectrometry to study herpesvirus protein-protein interaction networks. Methods Mol. Biol., 2060, 327–341. DOI
- Ershov, P.V., Mezentsev, Y.V., Yablokov, E.O., Kaluzhskiy, L.A., Vakhrushev, I.V., Gnedenko, O.V., Florinskaya, A.V., Gilep, A.A., Usanov, S.A., Yarygin, K.N., Ivanov, A.S. (2019) A method of lysate preparation to improve the isolation efficiency of protein partners for target proteins encoded by the genes of human chromosome 18. Biomedical Chemistry: Research and Methods, 2(1), e00090. DOI
- Florinskaya, A., Ershov, P., Mezentsev, Y., Kaluzhskiy, L., Yablokov, E., Medvedev, A., Ivanov, A. (2018) SPR biosensors in direct molecular fishing: Implications for protein interactomics. Sensors (Switzerland), 18(5), 1616. DOI
- Florinskaya, A.V., Ershov, P.V., Mezentsev, Y.V., Kaluzhskiy, L.A., Yablokov, E.O., Buneeva, O.A., Zgoda, V.G., Medvedev, A.E., Ivanov, A.S. (2018) The analysis of participation of individual proteins in the protein interactome formation. Biomeditsinskaya Khimiya, 64(2), 169–174. DOI
- Kaiser, P., Meierhofer, D.,Wang, X., Huang, L. (2008) Tandem affinity purification combined with mass spectrometry to identify components of protein complexes. Methods Mol. Biol., 439, 309–326. DOI
- Liu, G., Fu, T., Han, Y., Hu, S., Zhang, X., Zheng, M., Hao, P., Pan, L., Kang, J. (2020) Probing protein-protein interactions with label-free mass spectrometry quantification in combination with affinity purification by spin-tip affinity columns. Anal. Chem., 92(5), 3913–3922. DOI
- Pardo, M., Choudhary, J.S. (2012) Assignment of protein interactions from affinity purification/mass spectrometry data. J. Proteome Res., 11(3), 1462-1474. DOI
- Jia, Y., Chen, S., Wang, Q., Li, J. (2024) Recent progress in biosensor regeneration techniques. Nanoscale, 16(6), 2834–2846. DOI
- Food and Drug Administration,HHS (2019) Immunogenicity testing of therapeutic protein products-developing and validating assays for anti-drug antibody detection; Guidance for industry. Docket No. FDA-2009-D-0539,.
- Thoren, K.L., Pasi, B., Delgado, J.C., Wu, A.H.B., Lynch, K.L. (2018) Quantitation of infliximab and detection of antidrug antibodies in serum by use of surface plasmon resonance. J. Appl. Lab. Med., 2(5), 725–736. DOI
- Li, Y., Franklin, S., Zhang, M.J., Vondriska, T.M. (2011) Highly efficient purification of protein complexes from mammalian cells using a novel streptavidin-binding peptide and hexahistidine tandem tag system: Application to Bruton's tyrosine kinase. Protein Science, 20(1), 140–149. DOI
- Bludau, I., Heusel, M., Frank, M., Rosenberger, G., Hafen, R., Banaei-Esfahani, A., van Drogen, A., Collins, B.C., Gstaiger, M., Aebersold, R. (2020) Complex-centric proteome profiling by SEC-SWATH-MS for the parallel detection of hundreds of protein complexes. Nature Protocols, 15(8), 2341–2386. DOI
- DasGupta, B.R., Boroff, D.A. (1968) Separation of toxin and hemagglutinin from crystalline toxin of Clostridium botulinum typeAby anion exchange chromatography and determination of their dimensions by gel filtration. J. Biol. Chem., 243(5), 1065–1072.
- Gilbert, M., Schulze, W.X. (2019) Global identification of protein complexes within the membrane proteome of arabidopsis roots using a SEC-MS approach. J. Proteome Res., 18(1), 107–119. DOI
- Fossati, A., Frommelt, F., Uliana, F., Martelli, C., Vizovisek,M., Gillet, L., Collins, B., Gstaiger, M., Aebersold, R. (2021) System-wide profiling of protein complexes via size exclusion chromatography-mass spectrometry (SEC-MS). Methods Mol. Biol., 2259, 269–294. DOI
- Wittig, I., Malacarne, P.F. (2021) Complexome profiling: Assembly and remodeling of protein complexes. Int. J. Mol. Sci., 22(15), 7809. DOI
- Heusel, M., Bludau, I., Rosenberger, G., Hafen, R., Frank, M., Banaei-Esfahani, A., van Drogen, A., Collins, B.C., Gstaiger, M., Aebersold, R. (2019) Complex-centric proteome profiling by SEC-SWATH-MS. Mol. Syst. Biol., 15(1), e8438. DOI
- Ershov, P.V., Mezentsev, Y.V., Yablokov, E.O., Kaluzhsky, L.A., Florinskaya, A.V., Buneeva, O.A., Medvedev, A.E., Ivanov, A.S. (2018) Effect of bioregulator isatin on protein-protein interactions involving isatin-binding proteins. Russ. J. Bioorg. Chem., 44(2), 193–198. DOI
- Yablokov, E.O., Sushko, T.A., Ershov, P.V., Florinskaya, A.V., Gnedenko, O.V., Shkel, T.V., Grabovec, I.P., Strushkevich, N.V., Kaluzhskiy, L.A., Usanov, S.A., Gilep, A.A., Ivanov, A.S. (2019) A large-scale comparative analysis of affinity, thermodynamics and functional characteristics of interactions of twelve cytochrome P450 isoforms and their redox partners. Biochimie, 162, 156–166. DOI
- Campbell, L., Simpson, D., Ramasamy, K., Sadler, R. (2021) Using quantitative immunoprecipitation mass spectrometry (QIP-MS) to identify low level monoclonal proteins. Clin. Biochem., 95, 81–83. DOI
- Jensen, P., Patel, B., Smith, S., Sabnis, R., Kaboord, B. (2021) Improved immunoprecipitation to mass spectrometry method for the enrichment of low-abundant protein targets. Methods Mol. Biol., 2261, 229–246. DOI
- Jerabek-Willemsen, M., Wienken, C.J., Braun, D., Baaske, P., Duhr, S. (2011) Molecular interaction studies using microscale thermophoresis. Assay Drug Dev. Technol., 9(4), 342–353. DOI
- Nair, M.P., Teo, A.J.T., Li, K.H.H. (2021) Acoustic biosensors and microfluidic devices in the decennium: Principles and applications. Micromachines (Basel), 13(1), 24. DOI
- Basavarajappa, H.D., Sulaiman, R.S., Qi, X., Shetty, T., Sheik Pran Babu, S., Sishtla, K.L., Lee, B., Quigley, J., Alkhairy, S., Briggs, C.M., Gupta, K., Tang, B., Shadmand, M., Grant, M.B., Boulton, M.E., Seo, S.-Y., Corson, T.W. (2017) Ferrochelatase is a therapeutic target for ocular neovascularization. EMBO Mol. Med., 9(6), 786–801. DOI
- Sishtla, K., Lambert-Cheatham, N., Lee, B., Han, D.H., Park, J., Sardar Pasha, S.P.B., Lee, S., Kwon, S., Muniyandi, A., Park, B., Odell, N., Waller, S., Park, I.Y., Lee, S.J., Seo, S.-Y., Corson, T.W. (2022) Small-molecule inhibitors of ferrochelatase are antiangiogenic agents. Cell Chem. Biol., 29(6), 1010–1023.e14. DOI
- Burden, A.E., Wu, C., Dailey, T.A., Busch, J.L., Dhawan, I.K., Rose, J.P., Wang, B., Dailey, H.A. (1999) Human ferrochelatase: Crystallization, characterization of the [2Fe-2S] cluster and determination that the enzyme is a homodimer. Biochim. Biophys. Acta, 1435(1–2), 191–197. DOI
- Obi, C.D., Dailey, H.A., Jami-Alahmadi, Y.,Wohlschlegel, J.A., Medlock, A.E. (2023) Proteomic analysis of ferrochelatase interactome in erythroid and non-erythroid cells. Life (Basel), 13(2), 577. DOI
- Ivanov, A.S., Ershov, P.V., Molnar, A.A., Mezentsev, Yu.V., Kaluzhskiy, L.A., Yablokov, E.O., Florinskaya, A.V., Gnedenko, O.V., Medvedev, A.E., Kozin, S.A., Mitkevich, V.A., Makarov, A.A., Gilep, A.A., Luschik, A.Ya., Gaidukevich, I.V., Usanov, S.A. (2016) Direct molecular fishing in molecular partners investigation in protein-protein and protein-peptide interactions. Russ. J. Bioorg. Chem., 42(1), 14–21. DOI
- Sheftel, A.D., Stehling, O., Pierik, A.J., Elsasser, H.-P., Muhlenhoff, U., Webert, H., Hobler, A., Hannemann, F., Bernhardt, R., Lill, R. (2010) Humans possess two mitochondrial ferredoxins, Fdx1 and Fdx2, with distinct roles in steroidogenesis, heme, and Fe/S cluster biosynthesis. Proc. Natl. Acad. Sci. USA, 107(26), 11775–11780. DOI
- Ershov, P.V., Veselovsky, A.V., Mezentsev, Y.V., Yablokov, E.O., Kaluzhskiy, L.A., Tumilovich, A.M., Kavaleuski, A.A., Gilep, A.A., Moskovkina, T.V., Medvedev, A.E., Ivanov, A.S. (2020) Mechanism of the affinity-enhancing effect of isatin on human ferrochelatase and adrenodoxin reductase complex formation: Implication for protein interactome regulation. Int. J. Mol. Sci., 21(20), 7605. DOI
- Biringer, R.G. (2020) The enzymology of the human prostanoid pathway. Mol. Biol. Rep., 47(6), 4569–4586. DOI
- Beccacece, L., Abondio, P., Bini, C., Pelotti, S., Luiselli, D. (2023) The link between prostanoids and cardiovascular diseases. Int. J. Mol. Sci., 24(4), 4193. DOI
- Svirid, A.V., Ershov, P.V., Yablokov, E.O., Kaluzhskiy, L.A., Mezentsev, Y.V., Florinskaya, A.V., Sushko, T.A., Strushkevich, N.V., Gilep, A.A., Usanov, S.A., Medvedev, A.E., Ivanov, A.S. (2017) Direct molecular fishing of new protein partners for human thromboxane synthase. Acta Naturae, 9(4), 92–100. DOI